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Abstract. We present in this technical note an open-source web framework for the generation and

visualization of parametric OpenFOAM simulations from surrogate models. It consists of a JavaScript
module (rom.js) and a web app (cfd.xyz) to explore fluid dynamics problems efficiently and easily for a

wide range of parameters. rom.js is a JavaScript port of a set of open-source packages (Eigen, Splinter,

VTK/C++ and ITHACA-FV) to solve the online stage of reduced-order models (ROM) generated by
the ITHACA-FV tool. It can be executed outside a web browser within a backend JavaScript runtime

environment, or in a given web solution. This methodology can also be extended to methods using
machine learning. The rom.js module was used in cfd.xyz, an open-source web service to deliver a

collection of interactive CFD cases in a parametric space. The framework includes some tutorials,

showing the whole process from the generation of the surrogate model to the web browser. It also
includes a standalone web tool for visualizing users’ ROMs by directly dragging and dropping the output

folder of the offline stage. Beyond the current proof of technology, this enables a collaborative effort

for the implementation of OpenFOAM surrogate models in applications demanding real-time solutions
such as digital twins and other digital transformation technologies.

1. Introduction

Recent technological developments have made it possible to accelerate computational fluid dynamics
(CFD) modeling through physics-based or data-driven surrogate modeling. This acceleration is key for
enabling the integration of such solutions with real-life systems for dynamically controlling complex
processes, but also allows an interactive analysis of the parametric space of CFD simulations.

Different techniques using machine learning (ML) and/or reduced-order modeling (ROM) applied to
CFD have been described in the literature [1, 2, 3, 4, 5, 6]. Furthermore, several open-source packages
have been released in the past few years [7, 8, 9, 10, 11]. We aim with the developments presented
in this work to create a shared space where canonical and industrial CFD problems can be visualized
and analyzed without carrying out a simulation, or as a preliminary step for optimizing parameters of
new simulations. Having an open-source centralized service has several advantages, not only from an
educational, optimization and reproducibility point of views but also from a CO2 footprint perspective.
Computation and data processing are associated with increasing greenhouse gas emissions [12, 13, 14] that
are expected to increase significantly in the coming years with the use of high-performance computing
simulations and ML.

With our development, we predict the following benefits for the community:

• Educational enhancement: The use of the web app can accelerate the learning of fluid dynamics
by reducing the entry barrier of simulations. For example, a better understanding of how viscosity,
gravity or inlet velocity affects fluid dynamics could be easily observed directly in the browser
without any software installation or previous knowledge of how to use that software.

• Optimization: A preliminary analysis of similar physical problems through data-driven solutions
can provide useful information for a given industrial application. This might help at early stage
of designs by optimizing time and resources.
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• Reproducibility: The framework provides reproducible examples of CFD and ROM for Open-
FOAM tutorials that can be extended to cover more cases.

• Worldwide duplicity reduction: The use of CFD simulations around the world is increasing rapidly
and is applied nowadays from very specific industrial fields to daily applications. While this is
undoubtedly deepening our knowledge of fluid mechanics in industrial applications, it results in
an inefficient use of resources in global terms. Full-order model simulations will still be needed for
many research and industrial activities, however the adoption of a collaborative open-source web
framework for surrogate models could save many executions of simulations of similar scenarios,
thus reducing the carbon footprint.

• CFD sharing flexibility: The framework was designed to welcome open-source contributions of
CFD cases (offline stage), but also to only showcase the surrogate model, thereby being compatible
with organizations willing to protect their CFD models.

In addition, the web app also provides a standalone tool that directly connects the files of the surrogate
model with the parametric visualization by only dragging and dropping the ROM output folder. This
results in a convenient way of inspecting surrogate models, as you can directly visualize the results in-situ
without generating a data file per parameter.

Different open-source tools for scientific visualization are already available. Kitware [15] developed
a variety of software such as vtk.js [16], ParaViewWeb [17], ParaView Glance [18] and trame [19] for
visualizing scientific data on the web. Regarding the visualization of parametric simulations, RBniCS
[20, 21] developed a Python framework for reduced-order modeling with FEniCS. Examples using RBniCS
are shown in ARGOS [22] for different mathematical problems. Finally, ParaView recently integrated a
Python plugin for viewing inference results and monitoring the training process in real time for deep-
learning surrogates [23]. Compared with these frameworks, our approach provides: a) an integrated
solution for OpenFOAM from the parallel execution of simulations natively to ROM visualization, b) a
JavaScript port of the required tools for solving both turbulent ROM online stage and post-processing
results for visualization, c) an integrated web app for interactively visualizing the results for the different
parameters.

We developed two open-source tool tools for this work, rom.js [24] and cfd.xyz [25]. rom.js is a
JavaScript port of different packages such as Eigen [26], Splinter [27], VTK/C++ [28], and ITHACA-FV
[4, 5, 8] for interactively solving the online stage of reduced-order models generated by ITHACA-FV.
Finally, cfd.xyz is a web app that integrates rom.js and vtk.js to deliver a user-friendly, modular tool. A
starting point for the project is to showcase an example for a turbulent steady-state OpenFOAM tutorial
(pitzDaily) showing how to generate the surrogate models and integrate them in the web app. Future
work will focus on integrating other ROM techniques, ML and CFD packages on the framework and
incorporating other industrial problems.

2. Framework description

Our work relies on the offline-online splitting technique for facilitating the synergy between high
performance computing and reduced order methods [29]. In the offline stage, we compute on an HPC
or a workstation the full-order model (FOM) for a selected set of parameters. In the online stage, we
evaluate the solution with new parameters at significantly lower computational cost.

We created a JavaScript module, rom.js, containing the code needed for solving the online stage of
reduce-order models. We also developed some other tools for facilitating the execution of the offline stage
runs and the generation of the ROM. The module can be directly imported to work alongside JavaScript
on a web app or in a backend runtime. To showcase its use we created cfd.xyz, an open-source and
cross-platform web app for generating and visualizing CFD data. The results shown in this work can be
reproduced with the v1.0.0-rc.8 versions of these repositories.

2.1. rom.js - An open-source JavaScript module for the online stage of reduced-order mod-
eling. The rom.js module is a new implementation with ported versions of Eigen, Splinter, VTK/C++
and ITHACA-FV to compute and visualize the online stage of ROM generated by ITHACA-FV. They
were ported to WebAssembly [30] using Emscripten. WebAssembly is a portable binary-code format
that provides a way to run code written in different languages on the web at near-native performance.
Emscripten is a compiler toolchain that compiles the source code to WebAssembly. The module resulted
in an optimized single JavaScript file of around 7 MB, which is a relatively small size considering that
it can itself compute the ROMs solution and perform the volumetric post-processing tasks needed for
visualization.
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Figure 1. Comparison of velocity magnitude for OpenFOAM full-order model (FOM),
ITHACA-FV (ROM) and rom.js (ROM) for Uinlet of 1.5, 10.0 and 15.0 m/s and kinematic
viscosity, ν, of 5 × 10−5, 1 × 10−5 and 1 × 10−4 m2/s.

The main use of Eigen in this package is dealing with matrix operations and solving the ROM online
stage. Only a small subset of Eigen was needed. Splinter was ported to compute the online turbulent
viscosity using radial basis functions as described in [31]. Finally, VTK/C++ was used to reconstruct the
calculated values from Eigen to the original VTK unstructured grid, and to apply VTK filters. It is worth
noticing that vtk.js supports web visualization, but not unstructured grids and related components. The
integration of VTK/C++ in rom.js allows the reconstruction of the calculated volumetric fields to VTK
format. It also enables a later connection with vtk.js components for the visualization in a web browser
environment.

A workflow was developed for generating the CFD snapshots directly with OpenFOAM for the offline
stage. In this stage, the full-order model was solved repeatedly to construct the parametric space by
varying inlet velocity and kinematic viscosity in the range of 0.5 to 20 m/s and 5 × 10−6 to 1 × 10−4 m2/s,
respectively. These snapshots were later used for building the ROM with a new application based on
the ITHACA-FV library. Around 800 simulations were performed using a massively parallel processing
approach of single core runs for the pitzDaily tutorial. Within this approach, a bash script was designed
to set each simulation with the corresponding parameters and execute batches of simulations. The size
of the batches was defined as a user input with the total number of cores to allocate for this task. The
turbulent intensity was fixed at the inlet to 5% for this example, and therefore values for turbulent kinetic
energy (κ) and its dissipation (ε) are recalculated according to every inlet velocity.

The current version supports turbulent and laminar, incompressible, steady-state cases. For the tur-
bulent case, the ROM is generated using a mixed strategy that combines a data-driven reduction method
to approximate the eddy viscosity solution manifold and a classical POD-Galerkin projection approach
for velocity and pressure fields (see [31] for further details). The stabilization strategy used in our work
is based on the supremizer enrichment [5]. The ROM was built with 16 modes for velocity, and 5 modes
for pressure, eddy viscosity and supremizers.

The ROM online stage can be then solved with the provided velocity inlet and viscosity user inputs.
The total execution time for calculating the new fields and reconstructing them with rom.js was around
0.027 s. on an AMD Ryzen 9 5950X @ 3.4 GHz with 64GB of RAM. A comparison of the velocity
magnitude for OpenFOAM (FOM), ITHACA-FV C++ (ROM) and the rom.js (ROM) ported version
are shown in Fig. 1 for three conditions. This figure shows a good visual agreement between the FOM and
ROM for the three different conditions. It also verifies that the rom.js implementation gives good results
compared with ITHACA-FV. A mean root-mean-square error of 6.2 × 10−4, 6.4 × 10−4 and 1.4 × 10−4

m/s was obtained for the comparison between ITHACA-FV and rom.js for an Uinlet of 1.5, 10.0 and
15.0 m/s, respectively. Regarding the comparison between the OpenFOAM’s FOM and rom.js, the root-
mean-square error resulted in 0.0133, 0.0381 and 0.0127 m/s, respectively.

2.2. cfd.xyz - An open-source web platform for generating and visualizing of CFD data. A
single page web app, cfd.xyz, was designed in a modular way to include content containers in the form
of cards for the different OpenFOAM tutorials. The ROM generated by ITHAFCA-FV was used by
the web app as the surrogate models. Every tutorial available in the platform contains the interactive
visualization of a case for a range of different parameters (e.g., viscosity, inlet velocity, ...). The data for
a given set of parameters can also be downloaded for further post-processing on a dedicated desktop or
web tool. Fig. 2 shows screenshots of different stages of the web app.
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Figure 2. Screenshots of cfd.xyz for different pages.

The web app was built with React JS, a JavaScript library for building user interfaces. It is client-based
and the communication with the server is mainly for sending the bundle to the user. The visualization
of the cases for every set of parameters was achieved with vtk.js and rom.js. Fig. 3 shows an overview
of this process for a given case. The volumetric mesh (unstructured grid) and ROM data are fetched
from remote or local storage and initialized in the WebAssembly side with rom.js. A rendering scene is
initially set-up and rendered. The user can interact with the 3D view and modify the parameters defined
for the case. A change of these parameters triggers the calculation and visualization of the new fields.
Additionally, the data can be directly visualized or downloaded as VTK files or images.

3. Conclusion

We presented in this technical note an open-source framework for parametric generation and visu-
alization of CFD data. This approach provides an integrated solution for OpenFOAM cases from the
parallel execution of simulations natively with OpenFOAM to the visualization of results from reduced-
order models. A JavaScript port was performed for the required tools for solving turbulent ROM online
stage and post-processing results for visualization. Finally, a web app was developed for interactively
visualizing the results for the different parameters.

The framework consisted of two main components: a JavaScript module (rom.js) and a React JS web
app (cfd.xyz). Working together, these tools create a shared space where canonical and industrial CFD
problems can be visualized and analyzed on the web without carrying out a simulation. The models
and workflows for generating the surrogate models are also shared in a reproducible way. New cases
can be easily integrated on the web with the implemented methodology. The current version is based
on OpenFOAM as the CFD tool and ITHACA-FV as the reduced-order modeling (ROM) one. Further
implementations will be considered for including other ROM or machine learning packages, as well as
other CFD tools.

The pitzDaily OpenFOAM tutorial was used as an example. The generated ROM showed a good
agreement compared with the full-order model. The performance of the rom.js ported implementation
was also satisfactorily verified. This module resulted in a JavaScript file of 7 MB and can itself compute
the ROMs solution and perform the volumetric post-processing tasks needed for visualization. The
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Figure 3. High-level overview of the components in cfd.xyz

calculation and reconstruction of the new fields for a given set of parameters resulted in an execution
time of around 0.027 s. using this module. This permitted a smooth interaction through the different
parameters on the web version, and enables future implementations of new tools using CFD.
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