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Abstract. The standard lid-driven cavity test case is one of the most used validation cases in CFD.

Whilst comparisons with experimental and particularly DNS simulations are possible, there is no an-
alytical solution, and the case is ill-posed when considering the boundary conditions. A modified lid

driven cavity (MLDC) case exists in the literature [1] in which the lid velocity is non-uniform and which

introduces a spatially varying body force, and for which there is a closed-form analytical solution to the
Navier-Stokes equations which is a function of the Reynolds number. In this paper I present an im-

plementation of the MLDC as a modification of the standard OpenFOAM case, using run time coding

for the boundary conditions and fvOptions, and show how convergence to the solution is affected by
numerical parameters of simpleFoam such as choice of matrix inversion. The existance of an analytical

solution also allows the investigation of the relation between the solver residual and the true solution

error.

1. Introduction

Canonical test cases such as the backward facing step [2] or flow around a square prism [3] occupy an
important position in CFD. They provide flow conditions which are reasonably simple to set up (partic-
ularly in terms of the geometry), which illustrate particular types of flow, such as shear or recirculation,
and for which there is known data, typically experimental data, to compare against. One of the most
classic canonical cases is the lid driven cavity [4, 5, 6, 7], which generates a large primary vortex in the
middle of the domain. In the simplest case, which is of course available in the OpenFOAM [8] tutorials,
this is a 2d problem solved on a square domain (typically of unit side), with one moving side, usually
the top side, and three stationary walls. Depending on the Reynolds number (based on lid speed and
box dimension), this exhibits a range of laminar and turbulent flow, for which there is experimental
data available. Given the relative simplicity of the domain, this has also been used extensively for DNS
simulation, and this also provides significant validation resources [9].

More complex versions and extensions of the case have also been explored, often to address the con-
ceptual challenges of the simple setup. Extending the case into 3d introduces a variety of additional
behaviour [10] including potential periodicity in the third dimension. The behaviour of the flow in the
corners of the domain can also be investigated [11]. Under the correct circumstances, the flow exhibits
small secondary vortices in the corners which are not necessarily picked up by lower fidelity simulations,
and some authors have explored this for example using triangular domains [12, 13].

The challenge of the corner flow is made more complex by a fundamental contradiction in the simple
case, namely what is the motion of the corner vertices of the domain? For the corners between the moving
and stationary walls, this is ambiguous; if they count as part of the moving wall then they share that
velocity in the direction of movement of the wall, but if they are thought of as part of the stationary walls
then the velocity is zero. This can be resolved by using a varying lid velocity which drops to zero at the
corners. This was introduced by Shih et al [1], with a formulation which also provides for a closed form
analytical solution. Whilst complex, this has obvious benefits as a test case, as recognised by Marchi et
al [14]. Implementing this involves creating a new boundary (Dirichlet condition but spatially varying)
and introducing a complex body force into the momentum equation. This can be done by extensively
modifying the existing solvers [15], but this of course creates a new solver that has to be maintained.
OpenFOAM’s capacity for run time coding in input files, function objects and fvOptions provides an
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alternative approach of implementing the necessary coding in the case directory, and this is the subject
of this paper. The existence of an actual analytical solution to the Navier-Stokes equations makes this
an interesting validation test case in its own right, but also allows us to investigate the relationship
between the solution residual typically used in CFD (which measures the numerical imbalance of the
solved equations) and the actual solution error, for example defined as the integrated error over the
entire domain.

1.1. Modified Equations. Shih et al [1] work in dimensionless variables, for which the Navier Stokes
equations take the form

∇·U∗ = 0 (1)

U∗.∇U∗ =
1

Re
∇2U∗ −∇p∗ − jB(x∗, y∗, Re) (2)

where x∗ = x/L0 and L0 is the box dimension. This includes an additional body force B oriented in the
j direction. On the top surface the wall velocity is

U∗
x = 16

(
x4
∗ − 2x3

∗ + x2
∗
)

(3)

The body force B has the form

B(x∗, y∗, Re) =− 8

Re
[24F (x∗) + 2f ′(x∗)g

′′(x∗) + f ′′′(x∗)g(y∗)]

− 64 [F2(x∗)G1(y∗)− g(y∗)g
′(y∗)F1(x∗)] (4)

where

f(x∗) = x4
∗ − 2x3

∗ + x2
∗ (5)

g(y∗) = y4∗ − y2∗ (6)

F (x∗) =

∫
f(x∗)dx∗ =

x5
∗
5

− x4
∗
2

+
x3
∗
3

(7)

F1(x∗) = f(x∗)f
′′(x∗)−

1

2
[f ′(x∗)]

2
= −4x6

∗ + 12x5
∗ − 14x4

∗ + 8x3
∗ − 2x2

∗ (8)

F2(x∗) =

∫
f(x∗)f

′(x∗)dx∗ =
1

2
[f(x∗)]

2
(9)

G(y∗) = g(y∗)g
′′′(y∗)− g′(y∗)g

′′(y∗) = −24y5∗ + 8y3∗ − 4y∗ (10)

Here the primes represent derivatives with respect to x∗ and y∗. The exact solution to this problem is
given by

U∗
x(x∗, y∗) = 8f(x∗)g

′(y∗) = 8
(
x4
∗ − 2x3

∗ + x2
∗
) (

4y3∗ − 2y∗
)

(11)

U∗
y (x∗, y∗) = −8f ′(x∗)g(y∗) = 8

(
4x3

∗ − 6x2
∗ + 2x∗

) (
y4∗ − y2∗

)
(12)

p∗(x∗, y∗, Re) =
8

Re
[F (x∗)g

′′′(y∗) + f ′(x∗)g
′(y∗)]

+ 64F2(x∗)
[
g(y∗)g

′′(y∗)− [g′(y∗)]
2
]

(13)

Shi et al provide the information that B(0.5, 0.5, 1) = −3.356250 as an additional check on the solution.

2. Implementation in OpenFOAM

2.1. Dimensional equations. Implementation of these equations in OpenFOAM requires that they first
be converted back to dimensional quantities, which can be achieved by multiplying through by U2

0 /L0

(dimension [LT−2]), where U0 is the maximum lid velocity. In particular this gives

Ux = 16U0

(
x4
∗ − 2x3

∗ + x2
∗
)

(14)

B(x, y,Re) =− 8

Re
[24F (x∗) + 2f ′(x∗)g

′′(x∗) + f ′′′(x∗)g(y∗)]

− 64 [F2(x∗)G1(y∗)− g(y∗)g
′(y∗)F1(x∗)] (15)
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together with the solution

Ux(x, y) = 8U0

(
x4
∗ − 2x3

∗ + x2
∗
) (

4y3∗ − 2y∗
)

(16)

Uy(x, y) = 8U0

(
4x3

∗ − 6x2
∗ + 2x∗

) (
y4∗ − y2∗

)
(17)

p(x, y,Re) =
8U2

0

Re
[F (x∗)g

′′′(y∗) + f ′(x∗)g
′(y∗)]

+ 64F2(x∗)
[
g(y∗)g

′′(y∗)− [g′(y∗)]
2
]

(18)

For notational convenience, the non-dimensional coordinates x∗, y∗ have been kept here, however the
actual coordinates x, y must first be converted to non-dimensional form when evaluating these expressions.
After this, the equations (14) – (18) can be implemented as follows :

• Equation (14) can be implemented as a coded boundary condition in the velocity field. The
coding for this is reproduced in Table 1.

• Equation (15) can be implemented as a coded fvOption. The coding for this is reproduced in
Table 3.

• The solution (equations (16) – (18)) can be implemented and compared with the computed
solution through a user coded functionObject. This is discussed in section 2.5.

Note that the evaluation of the B term and of the overall analytical solution involves evaluation of a
number of derivative terms which are common to both sets of equations, so the coding of these functions
is placed in a separate file shiEqn.H which can be included into the fvOptions and functionObjects

definitions as required. Evaluation of these quantities like this involves repeated creation and destruc-
tion of the appropriate geometricField objects, which is hardly efficient, but this is not an important
consideration here.

2.2. Force on the lid. In fact we can take the analysis further and evaluate the force on the moving
boundary. Taking the derivative of equation (16)

∂Ux

∂y
=

∂y∗
∂y

∂Ux

∂y∗

=
8U0

L0

(
x4
∗ − 2x3

∗ + x2
∗
) (

12y2∗ − 2
)

=
80U0

L0

(
x4
∗ − 2x3

∗ + x2
∗
)

(19)

evaluated at y∗ = 1 which is the moving boundary. Since

F

A
= µ

∂Ux

∂y
(20)

for an elemental area on the moving lid A = dx× δz, where δz is the cell thickness in the mesh, this gives

F = µδz

∫ L0

0

∂Ux

∂y
dx = µδz

∫ 1

0

∂Ux

∂y

∂x

∂x∗
dx∗

= 80U0µδz

∫ 1

0

(
x4
∗ − 2x3

∗ + x2
∗
)
dx∗

=
8

3
U0µδz (21)

which can be compared with the force evaluated from the functionObject forces; with the rho entry
used to set the fluid density. Alternatively we can rearrange this to formulate a dimensionless force
coefficient by dividing through by 1

2ρU
2
0 , giving

CMLDC =
16

3

1

Re
(22)

For numerical convenience, U0 was chosen as 3 m/s, giving theoretical forces as decimals of 8, and the
viscosity varied to give Re = 3, 30, 300 as the test cases.

2.3. Coded boundary. The code section in Listing 1 calculates the position-dependent speed of the mov-
ing lid. Parameters of the MLDC (boxSide≡ L0 and boxVel≡ U0) are provided in the transportProperties
dictionary. Since dimension checking is provided at the geometricField level not at the level of boundary
fields, the values but not the dimensions of these quantities are needed. Note that the boxSide parameter
is linked to the geometry of the domain, so if this parameter is changed (in the separate file shiEqn.H)
then blockMesh needs to be rerun on the case.
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1 movingWall
2 {
3 type codedFixedValue;
4 value uniform (1 0 0);
5 name variedLid;
6 code
7 #{
8 const fvPatch& boundaryPatch = patch();
9 const vectorField& Cf = boundaryPatch.Cf();

10 vectorField& field = *this;
11
12 dimensionedScalar boxSide
13 (
14 "boxSide",
15 dimLength,this−>db().lookupObject<IOdictionary>
16 ("transportProperties").lookup("boxSide")
17 );
18
19 dimensionedScalar boxVel
20 (
21 "boxvel",
22 dimVelocity,this−>db().lookupObject<IOdictionary>
23 ("transportProperties").lookup("boxVel")
24 );
25
26
27 forAll(Cf, faceI)
28 {
29 const scalar x = Cf[faceI].x()/boxSide.value();
30 const scalar bValue = 16.0*boxVel.value()
31 *(sqr(x) − 2.0*pow(x,3.0) + pow(x,4.0));
32 field[faceI] = vector(bValue,0,0);
33 }
34 #};
35 }� �

Listing 1. Coded boundary condition implementing the moving lid.

2.4. Source Term. Listing (3) provides the additional source term Equation (15) in the momentum
equation. The majority of the code is actually coded in a separate file shiCalc.H as it needs to be shared
with the functionObject trueSoln (section 2.5); codeOptions being set appropriately so that the file
is available at compilation. Listing (5) presents the implementation of equations (5) - (10), with the
Reynolds number being calculated and output.

2.5. Calculation of the solution. Calculation of the solution (equations (16) - (18) is provided as a
user coded functionObject called trueSoln. This has two purposes :

(1) to calculate the true field solutions for p and U, and
(2) to calculate the error in the calculated fields, defined as the cell weighted average of the error

term normalised by the cell weighted average of the true solution, i.e.

perr =

∑
cell pi − pTheor,i∑

cell pTheor,i
(23)

Uerr =

√∑
cell (Ui − UTheor,i)

2∑
cell UTheor,i

(24)

with
∑

cell denoting a cell weighted summation – the mesh is currently homogeneous but this
could potentially be altered to investigate non-uniform meshes.
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1 codedSource
2 {
3 type vectorCodedSource;
4 selectionMode all;
5 active on;
6 redirectType velocitySource;
7
8 fields (U);
9 name B;

10
11 codeOptions
12 #{
13 −I$(FOAM CASE)/system
14 #};
15
16 codeAddSup
17 #{
18 vectorField& BSource = eqn.source();
19 const scalarField& V = mesh().V();
20
21 #include "shiCalc.H"

22
23 BSource = V*(b y.internalField())*vector(0,1,0);
24 #};
25 }� �

Listing 2. fvOptions code implementing the additional source term.

The local error values are calculated as part of this and are available as volScalarFields;

perr,i =
pi − pTheor,i∑

cell pTheor,i
(25)

Uerr,i =

√
(Ui − UTheor,i)

2∑
cell UTheor,i

(26)

As will be seen later, the one problem with this normalisation is that the pressure field ranges from
negative to positive, and so the denominator in equation 23 and 25 may be quite small (and sensitive to
other aspects of the solution), giving an unreasonably large perr normalisation.

2.6. Numerical Parameters. OpenFOAM, being an implicit CFD code, uses matrix inversion tech-
niques to solve the individual equations. Depending on the exact equation being solved, and significantly
its mathematical properties (such as symmetry/asymmetry), different inversion/solver algorithms are
used, particularly between the pressure equation and the other equations. In OpenFOAM, the pres-
sure equation can be solved either using a variant of Algebraic Multigrid (GAMG) or the preconditioned
Conjugate Gradient solver (PCG), whilst the velocity equation (and other transport equations) use either
the direct solver smoothSolver or the preconditioned Biconjugate Gradient solver (PBiCGStab). In the
installation tutorials, the pairing GAMG/smoothSolver is typically used (particularly for the existing Lid
Driven Cavity cases) and is denoted set A in table 1, whilst the combination PCG/PBiCGStab is denoted
set B. Table 1 also sets out the basic numerical parameters used, which are the common defaults (except
in section 6 where the tolerances were tightened to ensure that the matrix continued to solve properly).
Other numerical parameters and differencing schemes are as standard from the tutorial files; the intention
here is to illustrate the relationship between matrix residual and solution error for the commonly used
solver settings, not to perform an in-depth analysis of the matrix methods themselves.

3. Results

3.1. Spatial results. To demonstrate the nature of the actual solution, the results for the p and U
fields are presented in figure 1 for pressure (top) and velocity magnitude (bottom). Plots a,c are the
computed solution and b, d the theoretical values from equations (16) – (18), for the Re = 3 case. The
standard matrix solvers (Case A, GAMG and smoothSolver) were used. The calculations were carried out
on a 160× 160 resolution domain, and cell centred results are used for the visualisation in order to avoid
further interpolation in paraview. As can be seen, the fields are indistinguishable visually at this level.
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1 scalar Re = readScalar(mesh().lookupObject<IOdictionary>
2 ("transportProperties").lookup("Re"));
3
4 dimensionedScalar boxSide
5 (
6 "boxSide",
7 dimLength,mesh().lookupObject<IOdictionary>
8 ("transportProperties").lookup("boxSide")
9 );

10
11 dimensionedScalar boxVel
12 (
13 "boxvel",
14 dimVelocity,mesh().lookupObject<IOdictionary>
15 ("transportProperties").lookup("boxVel")
16 );
17
18 Info << "Re = " << Re << endl;
19 volScalarField x = mesh().C().component(0)/boxSide;
20 volScalarField y = mesh().C().component(1)/boxSide;
21
22 volScalarField f = pow(x,4.0)−2.0*pow(x,3.0)+pow(x,2.0);
23 volScalarField g = pow(y,4.0) − pow(y,2.0);
24
25 volScalarField F=0.2*pow(x,5.0)−0.5*pow(x,4.0)+pow(x,3.0)/3.0;
26 volScalarField F1=−4.0*pow(x,6.0)+12.0*pow(x,5.0)−14.0*pow(x,4.0)
27 +8.0*pow(x,3.0)−2.0*x*x;
28
29 volScalarField F2=0.5*f*f;
30 volScalarField G1=−24.0*pow(y,5.0)+8.0*pow(y,3.0)−4.0*y;
31
32 volScalarField fp=4.0*pow(x,3.0)−6.0*x*x + 2.0*x;
33 volScalarField fppp = 24.0*x−12.0;
34 volScalarField gp=4.0*y*y*y−2.0*y;
35 volScalarField gpp=12.0*y*y−2.0;
36 volScalarField gppp=24.0*y;
37
38 volScalarField b y
39 (
40 IOobject
41 (
42 "b_y",
43 mesh().time().timeName(),
44 mesh(),
45 IOobject::NO READ,
46 IOobject::AUTO WRITE
47 ),
48 ((−8.0/Re)*(24.0*F+2.0*fp*gpp+fppp*g)−64.0*(F2*G1−g*gp*F1))
49 *boxVel*boxVel/boxSide
50 );� �

Listing 3. File shiCalc.H implementing the derivative functions.

Similar plots can be produced for the other Reynolds number cases, but have not been included to save
space.

To identify actual discrepancies between the calculated and theoretical fields, error fields can be evalu-
ated, normalised by the cell weighted values. This has been done and the calculated fields and error fields
for pressure and velocity magnitude are displayed in figures 2 and 3 respectively. Note that since the
range of p goes from negative to positive, the average value is considerably smaller than the extremum
values, so this normalisation in fact exaggerates the level of the error.
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1 TrueSoln
2 {
3 funct i onObjec tL ibs ("libutilityFunctionObjects.so" ) ;
4 type coded ;
5 name TrueSoln ;
6 wr i t eContro l outputTime ;
7 w r i t e I n t e r v a l 1 ;
8
9 codeOptions
10 #{
11 =I$ (FOAMCASE) / system
12 #};
13
14 codeExecute
15 #{
16 #inc lude "shiCalc.H"

17
18 vo l S c a l a rF i e l d pTheor
19 (
20 IOobject
21 (
22 "pTheor" ,
23 mesh ( ) . time ( ) . timeName ( ) ,
24 mesh ( ) ,
25 IOobject : :NO READ,
26 IOobject : :AUTOWRITE
27 ) ,
28 ( ( 8 . 0 /Re) *(F*gppp+fp *gp )+64.0*F2*( g*gpp=gp*gp ) )
29 * dimens ionedSca lar ("one" ,
30 dimensionSet (0 ,2 , =2 ,0 ,0 ,0 ,0) , 1 . 0 )
31 ) ;
32
33 vo lVec to rF i e ld UTheor
34 (
35 IOobject
36 (
37 "UTheor" ,
38 mesh ( ) . time ( ) . timeName ( ) ,
39 mesh ( ) ,
40 IOobject : :NO READ,
41 IOobject : :AUTOWRITE
42 ) ,
43 mesh ( ) . lookupObject<vo lVectorF ie ld >("U" )
44 ) ;
45
46 vo l S c a l a rF i e l d ux = 8.0* f *gp*boxVel . va lue ( ) ;
47 vo l S c a l a rF i e l d uy = =8.0* fp *g*boxVel . va lue ( ) ;
48
49 UTheor . r ep l a c e (0 , ux ) ;
50 UTheor . r ep l a c e (1 , uy ) ;� �

Listing 4. First part of functionObject evaluating the true solution.

3.2. Forces on lid. Evolution of the lid force and correlations with the matrix residuals are presented
in figures 4 and 5 for the standard Multigrid solvers (A) and for the Conjugate Gradient solvers (B)
respectively.

Figure 4.a. demonstrates the (partial) convergence of the lid force against iteration number for the
standard solver configuration for the three different Reynolds numbers under investigation. To allow for
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1 s c a l a r pWeight = pTheor . weightedAverage (mesh ( ) .V( ) )
2 . va lue ( ) ;
3 s c a l a r UWeight = magSqr (UTheor ) ( )
4 . weightedAverage (mesh ( ) .V( ) ) . va lue ( ) ;
5
6 const vo lVec to rF i e ld& U = mesh ( ) . lookupObject
7 <vo lVectorF ie ld >("U" ) ;
8 const vo l S c a l a rF i e l d& p = mesh ( ) . lookupObject
9 <vo lSca l a rF i e l d >("p" ) ;
10
11 vo l S c a l a rF i e l d pErr
12 (
13 IOobject
14 (
15 "pErr" ,
16 mesh ( ) . time ( ) . timeName ( ) ,
17 mesh ( ) ,
18 IOobject : :NO READ,
19 IOobject : :AUTOWRITE
20 ) ,
21 mag(p=pTheor ) /pWeight
22 ) ;
23
24 vo l S c a l a rF i e l d UErr
25 (
26 IOobject
27 (
28 "UErr" ,
29 mesh ( ) . time ( ) . timeName ( ) ,
30 mesh ( ) ,
31 IOobject : :NO READ,
32 IOobject : :AUTOWRITE
33 ) ,
34 magSqr (U=UTheor ) /UWeight
35 ) ;
36
37 In f o << "Errors "

38 << mesh ( ) . time ( ) . timeName ( )
39 << " "

40 << pErr . weightedAverage (mesh ( ) .V( ) ) . va lue ( )
41 << " "

42 << UErr . weightedAverage (mesh ( ) .V( ) ) . va lue ( )
43 << endl ;
44
45 i f (mesh ( ) . time ( ) . writeTime ( ) )
46 {
47 pTheor . wr i t e ( ) ;
48 UTheor . wr i t e ( ) ;
49 pErr . wr i t e ( ) ;
50 UErr . wr i t e ( ) ;
51 }
52 #};
53 }� �

Listing 5. Second part of functionObject evaluating the solution error.
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Table 1. Matrix solvers used.

Case p U
A Solver GAMG smoothSolver

Smoother GaussSeidel symGaussSeidel
Tolerance 10−6 10−5

B Solver PCG PBiCGStab
Preconditioner DIC DILU

Tolerance 10−8 10−7

a. b.

c. d.

Figure 1. Comparison between computed fields (a,c) and theoretical values from equa-
tions (16) – (18) for pressure (top) and velocity (bottom), for Re = 3 case.

easy comparison, the forces are normalised by the appropriate value of Ftheor calculated from equation
(2.2). Convergence for the cases Re = 3, 30 seems to follow very much the same pattern, however the
calculated force for the Re = 300 case seems to overshoot before returning. The simulation terminates
when the matrix residuals drop below 10−4; it is fairly obvious from this graph that the forces are still
evolving at this stage and a final solution has not been achieved.

Figure 4.b. shows the correlation between the solution errors for the dependent variables and the
matrix residuals for the same variables. Here the solid lines give the correlation between the pressure
error perr (as defined by equation (23) and the initial pressure residual (p 0 extracted from running
foamLog). The dashed and dash-dot lines demonstrate the correlation between Uerr (defined by equation
(24) and the Ux 0 and Uy 0 residuals. As can be seen there are substantial differences between the
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a. b.

c. d.

e. f.

Figure 2. Pressure plots (left column) and pressure error plots (right column). 1st
row : Re = 3, second row Re = 30, third row Re = 300.
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a. b.

c. d.

e. f.

Figure 3. Velocity magnitude plots (left column) and velocity error plots (right col-
umn). 1st row : Re = 3, second row Re = 30, third row Re = 300.
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pressure curves although some of this may be down to overall normalisation – the pressure field of course
ranges from negative to positive so the denominator in equation 23 is possibly small. The other curves
relating Uerr to the U residuals all more or less follow the same path. What is interesting here is how
the solution errors change as the calculation proceeds, i.e. as the matrix residuals reduce in magnitude.
This corresponds to tracing the curves from right to left as the SIMPLE loop executes. As can be seen,
initially the curves are quite flat; improving the matrix residual 1 → 0.1 → 0.01 has comparatively little
effect on the solution accuracy. The solid black line on the figure shows a 1:1 correlation between the
Error and Residual, which would be ideal. The actual solution only really starts to substantially improve
when the matrix residuals drop to < 10−3, and as observed above, the errors are still reducing when the
matrix residuals reach 10−4 and the algorithm terminates.

Figure 5 shows the same graphs for the Conjugate Gradient solution. Largely this shows the same
behaviour. Convergence in this case is slightly quicker (in terms of number of iterations of the SIMPLE
loop) but not significantly so, and roughly the same comments may be made about the relationship
between matrix residuals and the solution errors.

3.3. Richardson Extrapolation. Figure 6 (top) presents results for the different Reynolds numbers
based on convergence of the force results. Instead of stopping the simulation when the matrix residuals
drop below 10−4, the simulation was run until the calculated lid force reached a stable value. This was
achieved for the coarse meshes to 6 significant figures but required significantly more effort for the finer
meshes (N = 320 meshes required 20,000 iterations to converge to achieve this). Tolerances on the matrix
solvers were tightened to 1× 10−9 to ensure that the matrices continued to solve throughout; otherwise
the matrix combination A was used. Richardson extrapolation was then applied by fitting a quadratic
curve to the data for each Reynolds number and then extrapolating to a zero reduced mesh spacing (the
mesh spacing for N = 320 being 1.0) to find the infinite mesh resolution value for the force. Table 2
shows the zero value for the different Reynolds numbers, indicating an error in this parameter < 0.1%.

The results can also be analysed to calculate the actual numerical error in the algorithm. As is well
known, the error term for any numerical scheme can be written as

F − Ftheor = Ahc + higher order terms . . . (27)

where h is the cell dimension and c the order of the scheme. Since the standard settings (used here)
for simpleFoam comprise a blend of 1st and 2nd order numerics we expect the effective value of c to lie
1 < c < 2. In order to compare the values for all three Reynolds numbers we can divide this expression
through by Ftheor and evaluate

Err(F ) = 1− F

Ftheor
= A′hc . . . (28)

Figure 6 (lower figure) presents the results for the three different Reynolds numbers together with curves
demonstrating pure 1st and 2nd order schemes. Using non-linear curve fitting gives the values presented
in table 2. For Re = 300 the order of the algorithm is 1.53. Values for the other two Reynolds numbers
are lower but the fit is compromised by the downturn curve of the graphs on coarser meshes; neglecting
the final point (h = 0.05 for a mesh spacing N=20) gave values of 1.47424 and 1.47925 for Re = 3 and
Re = 30, respectively.

Figure 7 shows the evolution of both matrix residuals and solution errors against iteration for the three
different Reynolds number cases. Judging by the solution errors the simulations have converged at 2500
iterations and no improvement in solution accuracy is possible, although the matrix residuals continue to
decrease until they reach the set level of 10−9. The error in U reaches a level of 10−7−10−8; however the
error in force F and the pressure error remain orders of magnitude higher. Since it is the viscous force
being evaluated (related to the velocity gradients) these two errors are not obviously related. Figure 8
shows the correlation between error and residual for different quantities; errors in force and pressure
plotted against pressure residual (top graph) and error in U plotted against Ux, Uy residuals (bottom
graph, A curves). Only the first 2500 iterations (up to convergence) are plotted. The straight lines give
a 1:1 relationship for comparison. As before (section 3.2, figure 4), initial improvements in residual have
little effect on the solution; residual convergence beyond 10−3 is more effective, whilst the final residual
convergence beyond 10−6 is ineffectual again. The somewhat odd behaviour of the force error for the
Re = 300 case is because the error goes negative for a time (the absolute error is being plotted here).

Since the force on the lid depends on the gradient of the velocity, figure 8 also shows the correlation
between the error in F and the Uy and Ux residuals (solid and dashed lines, respectively, lower figure,
B curves). As expected the correlations are somewhat smoother here; the lines for Re = 3 and Re = 30
are basically coincident, whilst those for Re = 300 diverge somewhat as the force error goes negative –
again, the absolute error is being plotted (in order to use logarithmic axes).
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a.

b.

Figure 4. Errors in the force evaluation (a, top figure) and comparison between the
solution error (defined by the weighted average of the error fields perr and Uerr, equa-
tions...) and the residuals for the pressure, Ux and Uy equations (b, bottom figure). In
both figures, blue curves represent Re = 3, red Re = 30 and green Re = 300. In the
lower graph, the solid lines represent the comparison between the pressure error perr and
the pressure equation residual, and the dashed and dotted lines represent the equivalent
comparison between Uerr and the Ux and Uy residuals respectively. The solid black line
shows what a simple linear relation between error and residual would look like.
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a.

b.

Figure 5. Errors in the force evaluation (a, top figure) and comparison between the
solution error and the residuals for the pressure, Ux and Uy equations using Conjugate
Gradient solvers (b. bottom figure). Details of the line styles are as given in figure 4.
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Figure 6. (Top) Richardson extrapolation on the meshes; plotting F/Ftheor against
mesh spacing index (taking the spacing for N = 320 as 1.0). The calculated points
are shown as coloured symbols. The lines are quadratic fits to each dataset, enabling
extrapolation to zero mesh spacing (infinite mesh resolution). (Bottom) Plot of error in
the numerical solution against mesh spacing h. Also shown are lines denoting O(h) and
O(h2) convergence.
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Figure 7. Convergence of errors and residuals over 5, 000 iterations. Top: Re = 3,
Middle Re = 30, Bottom: Re = 300.
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Figure 8. Solution errors vs. matrix residuals, complete simulation. Top: errors in
force F (solid lines) and pressure p (dotted lines) against pressure residual. Bottom:
Error in U (curves A) plotted against Ux, Uy residual (solid, dotted lines respectively).
Error in F (curves B) is also plotted against Ux, Uy residual (dash-dot, dash-dash-dot).
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Table 2. Values of F/Ftheor from Richardson extrapolation for the different Reynolds
numbers. Values are also given for the error coefficient c.

Re F/Ftheor c
3 0.999219 1.24309
30 0.99923 1.25798
300 0.999451 1.53126

4. Conclusions

Validation and verification are important aspects of CFD. The distinction between these activities can
be summed up as : verification is the act of checking that the mathematical equations have been validly
implemented in the code, whilst validation is the act of checking that the solution matches mathematical or
physical reality – that the mathematical model is itself correct. In both activities, canonical cases, which
illustrate specific types of flow in simple geometries, hold a significant position. Because of the complex
nature of the Navier Stokes equations, mathematical solutions are rarely available, so experimental or
DNS numerical data has often been used. However where analytical results are possible they can provide
a very high quality of comparison. Juretic [16] for example has demonstrated validation of OpenFOAM
against algebraic solutions for a planar jet, as well as analytical solutions for simpler physics such as
creeping flow and heat conduction.

This paper presents an implementation in OpenFOAM of a modified Lid Driven Cavity test case. The
modifications, due to Shi et al [1, 14] include a non-uniform lid velocity (thus avoiding the ambiguity in
the velocity at the corners of the domain) and a body force, and allow a closed form analytical solution.
This has been extended to calculate the force on the lid, which provides a convenient physical and
quantitative comparison between the solution and the numerical results. In addition to validating the
classic simpleFoam solver for both multigrid and Conjugate Gradient solvers, this provides an excellent
test case to examine the relation between the solution residual from the matrix solver and the actual
mathematical error in the results. This shows the following :

• Monitoring residuals alone is not necessarily sufficient to identify convergence of a simulation. In
particular even a relatively tight residual tolerance (of 10−4) does not guarantee convergence of
physical properties such as boundary forces.

• In general the relationship between the matrix residuals and the physical solution error is mono-
tonic but not linear. Initial reductions in residual may not be accompanied by equivalent re-
ductions in error. Where there is a mathematical link between the quantity being solved and
the physical parameter being monitored (so between the velocity field and the force which is a
function of the gradient of that field) there may be a closer relationship between the residual and
the error.

• Fully converging the forces and applying Richardson extrapolation across a range of mesh reso-
lutions, the error in the solution can be reduced to less than 0.1%, with a numerical error order
of around 1.5, indicating a combination of 1st and 2nd order schemes. Further tuning of the
numerical parameters might improve this, and this could be a valuable test case for comparing
the actual effects of various numerical schemes (both differencing schemes and matrix solvers).
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analysis, G.T.; investigation, G.T.; resources, G.T.; data curation, G.T.; writing—original draft preparation,
G.T.; writing—review and editing, G.T.; visualisation, G.T.; supervision, G.T.; project administration, G.T.;
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