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PÁL SCHMITT AND DESMOND ROBINSON

Queen’s University, Marine Laboratory, 12-13 The Strand, Portaferry, BT22 1PF, United Kingdom

Email address: p.schmitt@qub.ac.uk

Queen’s University, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom

Email address: des.robinson@qub.ac.uk

DOI: 10.51560/ofj.v2.51
Version(s): OpenFOAM® 8
Repo: https://github.com/palschmitt/turbinesFoam

Abstract. Fluid-dynamic loading of many solid bodies can be simulated using geometry resolving

computational fluid dynamics methods, where the body’s shape is resolved in the mesh. In some cases

though slender bodies, like ropes or cables, spars, turbine blades, foils and lattice structures would
require prohibitively high cell counts, since the geometrical features to be resolve are much smaller than

the overall domain. Such bodies are usually made up of generic cross sections like round, square or

standardised technical profiles like the famous NACA digit series for which good parametrisations of
reaction forces to incoming flow exist. Actuator line methods apply inflow dependent reaction forces

to the fluid domain, thus allowing the computationally efficient simulation of slender bodies and have

been used extensively, for example in wind and tidal turbine simulations. Beam elements representing
slender bodies are standard building blocks in structural finite element models. Combining actuator line

theory with a finite element beam model allows the efficient simulation of flexible structures under fluid
loads, like turbine blades or nettings used in fish farms. This paper presents an implementation of such

a coupled model in OpenFOAM based on the existing turbineFoam actuator line model. The underlying

numerical method is detailed and first test cases are provided.

1. Introduction

With sufficient spatial and temporal resolution even the most complex flow effects like flow separation
and highly turbulent flows can be resolved using computational fluid dynamics methods (CFD) [1].

However, for practical design purposes, computational resources are limited and simplifications are
still needed. Computational domains in marine engineering typically extend over several wave lengths
or the water depth, and thus often range over 100s of metres. Challenges arise especially if details of
the structure of interest are orders of magnitude smaller than the domain, as is frequently the case for
lattice structures and foils, for example for tidal turbines, mooring systems, fish farms and wave energy
converters.

Correctly resolving a NACA0012 profile in all operating conditions at a Reynolds Number of 6 million
requires roughly 0.5 million cells in only 2 dimensions [2]. For most industrially relevant three dimensional
problems the same level of resolution results in a very high cell count.

Slender structures have been studied extensively and parametric descriptions or lookup tables exist for
most features like lift or drag coefficients. Actuator Line Models (AL) use such parametric descriptions
of profiles to apply the resulting force to the flow field, without representing the structure in the mesh
[3, 4, 5]. AL simplify the meshing, since only the fluid domain needs to be created. The resulting lower
mesh size can reduce the computational burden and thus allows to focus on resolving far field effects like
wakes in wind and tidal turbines [6, 7, 8, 9, 10]. Applications to other marine structures are still limited,
one interesting exception is the work on the underwater kite system by Fredriksson et al. [11].

An interesting feature of slender bodies is their structural response. Hydrofoils are sensitive to the
angle of attack (AoA) and thus torsional deformation. Mooring lines, nets and lattice frameworks can
deform significantly, especially in dense fluids. Wind turbines are sometimes designed to deform into
their ideal shape under wind loading. Tidal as well as wind turbines have been built to shed excessive
loads by bend-twist coupling, see Nicholls-Lee et al. [12].
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This paper describes a first version of ALFEA, implementing the coupling of an AL toolbox with
Finite Element Analysis (FEA) to enable the simulation of fluid structure interaction of arbitrary slender
structures. The focus in this paper lies on marine engineering applications. However, the methods
should be applicable to a much wider range of physical problems. Similar implementations like Sale et al.
[13], Neumann [14] are limited to turbine blades, do not seem to be maintained any more or are not
available as open source code.

The toolbox is based on OpenFOAM® and extends the AL method originally implemented by Bachant
et al. [5] with a custom written FEA model to take structural deformations into account.

The paper is structured as follows. The following section 2 provides an overview of the FEA module.
Section 3 details the coupling with the AL method. A further section 4 provides details on test cases.
Conclusions are drawn and an outlook on future applications in section 5.

2. Frame Analysis Implementation

A wide range of open source FEA methods are available and could be used for coupling. However,
most FEA methods offer many more features than could possibly be used in this application and are
not written in C++. To ease maintenance of the code base and integration with OpenFOAM® , it was
decided to write a stand alone C++ library with only the required functions.

This section provides a basic overview of the code design and implementation. The method used
closely follows the formulation in Przemieniecki [15]. Beam elements are based on 2 nodes describing
the end positions of each element and can evaluate bending along and torsion around their length axis
and extension/compression due to normal forces according to linear theory. The current implementation
employs a steady state formulation.

A first implementation in GNU octave [16] was used for initial development and validation. In a second
step the code was reimplemented in C++ making use of the Armadillo library for matrix manipulation
[17]. OpenFOAM® [18] offers its own syntax for matrix operations but since the Armadillo library was
specifically written to provide a similar interface to GNU octave, its use simplified the reimplementation
of the code signficantly. The entire frame analysis class definition consists of less than 800 lines of code.

All frame analysis code is located in a new folder called FEA, located inside the original turbinesFOAM
library inside the src folder.

The FEA mesh is defined by lists of node locations and connections. The constructor of the novel
FrameAnalysis class calls the beam1() function, which iterates over all elements and by calling the
elemstiff() function creates the respective element matrices Ke in local coordinates.

Ke =
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(2.1)

Here E is the Young modulus, A the cross section area, L the length, Iz and Iy the cross section inertias,

G = E
2(1+P ) the shear modulus with P the Poisson coefficient.

elemstiff() also creates the transformation matrices required to transform from local (element) to
global coordinates. The function call assem() then assembles the overall system matrix K in global
coordinates. K is then reordered by the function neworder() according to the boundary conditions
provided, yielding separate submatrices for free (f) and restrained (r) nodes, with u being the deformations
and F the forces: [

Kff Krf

Krf Krr

] [
uf

ur

]
=

[
Ff

Fr

]
(2.2)

Algorithm 1 provides a pseudo code to help understand the code structure.
The armadillo library’s solve() function is then used to obtain the deformations at the free nodes by

solving

uf = K−1
ff (Ff −Kfrur) (2.3)

and the reaction forces are then obtained by evaluating

Fr = Krfuf +Krrur (2.4)
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Algorithm 1 FrameAnalysis Workflow

Import nodes, elements..
for all elements do
elemstiff() create element stiffness and transformation matrix Ke and RotMat
assem() Assemble system stiffness matrix K

end for
neworder() find free and restrained nodes

reorder() Partition K according to free and restrained nodes, such that

[
Kff Krf

Krf Krr

] [
uf

ur

]
=

[
Ff

Fr

]
loading() Partition system force F into Ff and Fr

predisp() Partition system deformation u into ur and uf

solve uf = K−1
ff (Ff −Kfrur)

solve Fr = Krfuf +Krrur

nodaldisp() Rearrange deformation according to input

The armadillo library employs its own matrix type definition which differs from the lists used in the
AL model. Helper functions to convert lists of floats or integers into armadillo matrices were implemented
and are called List2Mat() and List2intMat(). The function Mat2List() allows to reconvert data from
armadillo matrices to lists.

3. Coupling with AL model

Details and first validation cases of the AL method are provided by Bachant et al. [5]. This section
focusses on the coupling methodology.

As shown in the schematic in Fig 1, forces are evaluated at the midpoint of each AL element, while in
the FEA model forces and restrains must be defined at the nodes or endpoints of each element. The FEA
mesh is thus generated with twice as many elements as the AL definition. Forces evaluated by the AL for
a given node position and orientation are passed to the FEA model. These fluid forces are then applied
to every second node in the FEA mesh. The use of equal numbers of FEA and AL elements would also be
possible, but require the evaluation of equivalent loads and thus a significant increase in the codebase and
runtime. While it is unclear whether the additional operations would outweigh the benefit of a smaller
FEA system matrix, it should be noted that in typical application scenarios the FEA matrix is expected
to be orders of magnitude smaller than the matrices involved in the fluid solver. The FEA simulation are
thus not believed to be a bottleneck for the overall simulation and efficiency considerations less relevant.

Resulting deformations from the FEA run are then applied to the AL method by updating the node
positions and re-evaluating the AL elements’ centre pitch and fluid force properties. Restraints can only
be defined for the first or last element of a section and are applied at the first or last node respectively.

All required FEA inputs are defined through the AL model definition in system/fvOptions as shown
in listing 1 which was extended to allow for the definition of material and geometrical properties like the
Young modulus, section area/inertias and restraints.�

1
2 \\point spanDir chordLength chordRefDir chordMount pitch
3 E nu sects A Iz Iy J alpha restraints
4 (
5 ((0 0 0) (0 0 1) (0.10) (1 0 0) (0.25) (10.0)
6 (11E9 0.2) (0.003 7.E−06 7.E−06 0.02 0) (1 1 1 1 1 1))
7 ((0 0 1) (0 0 1) (0.1) (1 0 0) (0.25) (10.0)
8 (11E9 0.2) (0.003 7.E−06 7.E−06 0.02 0) (0 0 0 0 0 0))
9 );� �

Listing 1. Example FEA parameter defintion in the AL settings

Restraints are defined as a list of six values, set to either 1 for fixed or 0 for a free degree of deformation.
The first three values refer to translation in x, y and z direction and the last three to the respective
rotations.

The original AL model interpolates section values linearly along a geometric section for any wanted
number of elements, this same interpolation is also applied to FEA properties except the restraints, which
are only applied to the first or last node of each section.

The AL evaluates source terms for the momentum equation. The force acting on the flow is thus
applied as a discrete source term every time the velocity equation is solved. For each AL element, the
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last available flow field is used to evaluate parameters like the AoA and velocity magnitude. Each actuator
line element also saves the applied forces and moments. The differential between new and current time
step is applied in the FEA model, such that a constant load in time will not lead to further deformation
after finding the equilibrium state. The FEA model is solved at every new time step and the positions
and rotations returned to the AL model. The AL then updates element positions and profile pitch is
adjusted by the negative cross product of the elements’ span direction and FEA rotation vector. A high
level pseudo code of the algorithm is provided in Algorithm 2.

Algorithm 2 Coupling between AL and FEA model

for Timesteps do
Solve fluid field with AL source terms
Obtain change in fluid forces since last time step
Create FEA mesh from AL positions
Evaluate deformation of structure
Update AL positions and orientations

end for

4. Test Cases

AL methods have been tested extensively for a wide range of applications [5, 3, 19, 20, 11], the test
cases presented here thus focus on the FEA part.

The fluid domain is identical for all cases and based on the original static actuatorLine tutorial
case from the turbinesFoam library. In all cases the pimpleFoam solver was used with OpenFOAM®

-8 in transient mode with 2 outer correctors. The kEpsilon turbulence model was employed and cases
were run for at least 2 seconds. Resulting deformations are always presented for the last timestep unless
explicitly defined differently. A steady-state simulation might save some computational effort and would
also have sufficed for demonstrating the steady state FEA implementation. However, to ease testing for
users already familiar with the AL methods and because we plan to extend the method to transient cases,
we chose to keep the fluid solver settings of the test cases and setup unchanged.

The domain is a cube with a bounding box with extreme positions (-1.52, -1.83, -1.22) and (2.16,
1.83, 1.22). The basic mesh is refined with 32, 32 and 24 cells in x, y and z direction respectively.
snappyHexMesh is used to create a zone with refinementLevel 2 within a cylinder with 0.5 m radius
between points (0 0 -1.5) to (0 0 1.5). An example of the resulting mesh is shown in Fig 2. Boundary
conditions used in the fluid simulation are presented in Table 1, numerical values used are given in listing
2.

4.1. Test Case 1: Bending. A first test was devised to evaluate deformation due to bending. Case
files can be found under turbinesFoam/tutorials/actuatorLine/bendingtestFEA. A blade profile of
L = 2m length is fixed in rotation and deflection in all directions at the position (0,0,-1) and points in z
direction as shown in Fig 3. A flow of v = 1m/s in x direction acts on the profile at an AoA of 10◦ for
which the coefficient of lift CL is 0.8.

Fluid Forces

AL Model Position

FEA Forces at node positions

BC

Figure 1. Schematic representation of the data structures used in ALFEA. Boundary
conditions (BC) are applied to first and/or last nodes of section. Fluid forces (black
arrows) are applied from AL element positions to every second FEA node.
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1 flowVelocity (1 0 0)
2 pressure 0;
3 turbulentKE 2e−4;
4 turbulentEpsilon 3e−5;� �

Listing 2. Numerical values used in boundary and initial conditions

Figure 2. Layout of the computational domain with patch names, fluid mesh resolution
and main dimensions.

Table 1. Boundary Conditions used in fluid solver. (WF stands for WallFunction.)

Patch p U k nut epsilon

inlet zeroGradient fixedValue uniformFixedValue calculated fixedValue

outlet fixedValue inletOutlet inletOutlet calculated inletOutlet

top zeroGradient fixedValue kqRWF nutkWF epsilonWF

bottom zeroGradient fixedValue kqRWF nutkWF epsilonWF

wall zeroGradient fixedValue kqRWF nutkWF epsilonWF

Further input data is provided in table 2. The given parameters result in a continuous load of

q =
v2

2
CLcρ = 40N/m (4.1)

and the analytical solution for deflection δ under constant load is [21]

δ(x) =
qL4

24EIz

(
x4

L4
− 4

x

L
+ 3

)
; (4.2)

End effect models, used to correct for the loss in lift close to wing or blade tips were not used. Although
unphysical this setting allows better comparison with a simple analytical load model of constant load
along the beam.

Fig 4 shows element positions from the ALFEA model in direct comparison to results from the ana-
lytical model, Eq 4.2. Agreement is good but minor differences for the biggest deflection at the free end
of the wing can be observed. It was found that fluid forces acting on the wing do not exactly agree with
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z

x

y

u

q

L

δ

Figure 3. Schematic representation of the bending test case. The red line indicates the

deformed shape of the beam, caused by the continuous load q = v2

2 CLcρ

the analytical solution. It should be noted though, that the analytical solution does not take the three
dimensional effects around the blade ends into account. Applying the overall forces obtained from the
ALFEA model as a distributed load q′ = F/L in the analytical equation 4.2 is shown as EqSim in Fig 4
and yields excellent agreement.

4.2. Test Case 2: Torsion. A second test case aimed at evaluating torsional deformation can be found
under tutorials/actuatorLine/torsiontestFEA/. As shown in Fig 5, a wing is now supported by a

Figure 4. Results for the deflection along the blade section according to the ALFEA
model (AL), analytical solution (Eq) and analytical solution using loads from ALFEA
model (EqSim).
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Table 2. Input Data for Bending Test Case

Symbol Meaning Value Unit

L Length 2 m/s

CL Lift Coefficient 0.8 —

c Chordlength 0.1 m

v Velocity 1 m/s

ν Viscosity 1E-6 m2/s

ρ Density 1 kg/m3

Re Reynolds Number 1E5 —

E Young modulus 11E9 N/m2

P Poisson Coefficient 0.2 —

A Cross Section Area 0.003 m2

Ix, Iz Inertia 7.E-6 m4

Ip Polar Inertia 0.05E-6 m4

q Continuous Load 40 N/m

beam of length LS in x direction, such that the lift force on the wing will create a torsional moment [21]

Mt = qL2/2 (4.3)

and a deformation angle of

ϕ =
MtLS2(1 + P )

IS,pE
(4.4)

Variable names and values used are given in Table 3
Table 4 lists resulting deformation angles from Eq 4.4 and the ALFEA simulation (AL). Eq 4.4 yields

to 5.5% less deformation than the simulation. The cause for this deviation is again the difference between
analytically derived force and ALFEA results. Results obtained using Eq 4.4 with the loads from the
ALFEA model (EqSim) yield excellent agreement with the ALFEA simulation.

4.3. Test Case 3: Changing angle of attack by a deforming substructure. A last test scenario
demonstrates the change of AoA by the deformation of the supporting structure. Two cases are simulated.
Case 1 simulates a deforming support structure with the inertia of the supporting beam set to 7.E−11 m4.
Case 2 simulates a virtually rigid support structure with the inertia of the supporting beams set to
7.E−6 m4. The two simulations can be found under tutorials/actuatorLine/changeAoA and fixedAoA

respectively. Key input parameters of the cases are listed in Table 5.

z

x

y

u

q

L

ϕ

LS

Figure 5. Schematic representation of the torsion test case. The red line indicates the
rotated position of the beam, the red arc the deformation angle ϕ.
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Table 3. Additional/Amended Input Data for Torsion Case

Symbol Meaning Value Unit

L Length 1 m/s

Ix, Iz Inertia 7.E-6 m4

LS Length Support Beam 0.9 m/s

IS,p Polar Inertia Support Beam 0.05E-6 m4

cS Chord Length Support Beam 0.01 m

Table 4. Absolute torsional deformation and percentage error compared to ALFEA results

Case Value [◦] % Error

ALFEA 0.00477 0.0

Eq 4.4 0.00450 -5.6

EqSim 0.00478 0.25

A profile of length L is supported by two supporting beams of lengths LS as shown in Fig 6.

z

x

y

u

q

L

AoA

LS

AoA− ϕ

q′

Figure 6. Schematic representation of the changing AoA test case. The red line in-
dicates the deformed support beams. As the beam ends are lifted in y direction and
rotate by the angle ϕ around the z axis, the AoA of the foil reduces by the same amount,
decreasing the lift force q to q′.
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Table 5. Additional/Amended Input Data for AoA Case

Symbol Meaning Value Case 1 Value Case 2 Unit

L Length 1 1 m/s

Ix, Iz Inertia Wing 7.E-6 7.E-6 m4

LS Length 1.5 1.5 m/s

Is,x, Is,z Inertia of Support 7.E-11 7.E-6 m4

The upward force

F =
v2ClcL

2
(4.5)

causes the deformation δ(x) along the length of the supporting beams

2δ(x) =
FL3

S

6EIz

(
2− 3x

L
+

x3

L3

)
(4.6)

and a deflection angle at the profile position [21]

tan 2θ =
FL2

S

2EIz
(4.7)

The factor 2 in front of the angle θ and δ(x) accounts for the number of supporting beams.
For a rigid structure the AoA remains constant and the CL only varies during the transient startup

while the flow field develops. The soft support structure causes a reduction of AoA due to the deflection
angle and thus limits the loading.

Fig 7 shows the deflection of the beam under loading equivalent to the undeformed structure, with an
AoA of 10◦ (Eq) according to Eq 4.6. Deformation by a load corresponding to a reduction in CL by this
maximum deformation is shown as EqIter and yields much lower deflections. ALFEA simulations (AL)
yield to the mean deformation of those extreme assumptions. EqSim, obtained using the loading from
the ALFEA model show excellent agreement with the simulation results.

Fig 8 shows AoA and CL for Case 1 and Case 2 over time. The inital AoA is 10◦ and the corresponding
CL 0.8. The AoA for Case 2 remains constant over time and CL settles after 2 seconds at a value of 0.85.
Case 1 shows a drop in AoA to 8.3◦. The CL also settles at a lower value of 0.725.

5. Conclusions

This paper presents details on a first version of the ALFEA toolbox. Coupling of AL and FEA
methods now enables the efficient simulation of flexible slender structures in OpenFOAM® . Details on
the implementation are provided. Two test cases demonstrate correct application of the forces evaluated
by the AL model to the newly implemented FEA toolbox for bending and torsional deformation. A
third test case demonstrates interactions affecting the AoA and the change of fluid loading caused by the
structure’s deformation.
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Figure 7. Resulting deflection along the supporting beam according to simulation (AL)
and three analytical solutions. Eq is the result assuming no deformation and using a CL

corresponding to the AoA of the undeformed structure at 10◦. EqSim presents results
with the load taken from the last simulation step and shows best agreement. EqIter
assumes a load corresponding to the AoA after deformation by the load of the undeformed
beam.
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AoA drops to below 8.3◦ before recovering to 8.45◦, resulting in a CL of 0.74, while for
Case 2 the AoA remains constant at 10◦ with the CL settling at 0.85.
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