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ABSTRACT. Free-surface flows and other variable density incompressible flows have numerous important
applications in engineering. One way such flows can be modelled is to extend established numerical
methods for compressible flows to incompressible flows using the method of artificial compressibility.
Artificial compressibility introduces a pseudo-time derivative for pressure and, in each real-time step,
the solution advances in pseudo-time until convergence to an incompressible limit—a fundamentally
different approach than SIMPLE, PISO, and PIMPLE, the standard methods used in OpenFOAM®
. Although the artificial compressibility method is widespread in the literature, its application to free-
surface flows is not. In this paper, we apply the method to variable density flows on 3D unstructured
meshes, implementing a Godunov-type scheme with MUSCL reconstruction and Riemann solvers, where
the free surface gets captured automatically by the contact wave in the Riemann solver. The critical
problem in this implementation lies in the slope limiters used in the MUSCL reconstruction step. It
is well-known that slope limiters can inhibit convergence to steady state on unstructured meshes; the
problem is exacerbated here as convergence in pseudo-time is required not just once, but at every real-
time step. We compare the limited gradient schemes included in OpenFOAM® with an improved limiter
from the literature, testing the solver against dam-break and hydrostatic pressure benchmarks. This
work opens OpenFOAM® up to the method of artificial compressibility, breaking the mould of PIMPLE
and harnessing high-resolution shock-capturing schemes that can scale better in parallel.

1. INTRODUCTION

Variable density incompressible flows are of much practical interest in engineering. One important
class of variable density incompressible flows is free-surface flows of water and air, for example, dam
breaks [1], hydraulic jumps [2], hydraulic structures [3], and nature-based flood defences, both coastal
[4] and fluvial [5]. These flows in these papers [1, 2, 3, 4, 5] were all modelled using the volume-of-fluid
(VOF) solver interFoam. As with most OpenFOAM® solvers, interFoam uses the PIMPLE algorithm
to update the pressure field. In this paper, we harness the flexibility of OpenFOAM® to implement
an alternative free-surface solver based on the method of artificial compressibility [6], which has a key
computational advantage compared to PIMPLE.

Both artificial compressibility and PIMPLE address the problem of the incompressible Navier-Stokes
equations having no equation for pressure. In artificial compressibility, the idea is to add a pseudo-time
derivative for pressure to the incompressibility constraint, and the solution advances in this pseudo-time
until convergence to an incompressible limit [7, 8, 9]. This makes the governing equations hyperbolic, and
thus solvable with the wealth of methods developed for compressible flows, for example, Godunov-type
schemes involving MUSCL (monotonic upstream-centered scheme for conservation laws) reconstruction
and Riemann solvers. While the method was originally developed for steady-state cases, it can be
generalised to transient cases by employing dual time stepping, where the solution converges to the
incompressible limit each real-time step.

This is a fundamentally different approach to the PIMPLE algorithm. PIMPLE, a combination of SIM-
PLE (semi-implicit method for pressure-linked equations) [10] and PISO (pressure-implicit with splitting
of operators) [11], is a predictor-corrector method that relies on matrix inversion. While such methods
require fewer total iterations than artificial compressibility and therefore would be more efficient in serial
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[12], artificial compressibility is easier and more efficient to parallelise [12, 13, 14] and can lead to almost
linear speed-up [15]. This is because solving local wave propagation problems requires less communication
between processors than matrix inversion [12]. Therefore, it is worthwhile to depart from the conven-
tion of using PIMPLE in OpenFOAM® and investigate implementing artificial compressibility instead
because of its scaling potential on the massively parallel architectures of today.

Although the artificial compressibility method is widespread, its application to free-surface flows is not
[16]. Kelecy and Pletcher [17] pioneered an approach, modelling the flows as incompressible with variable
density and then the air-water interface gets captured automatically by the contact wave in the Riemann
solver. As such, no special treatment like in VOF [18] is required, making the surface capturing simpler
computationally. Until the present paper, numerical methods to solve the variable-density artificial-
compressibility equations have not been implemented on 3D unstructured meshes. They have been
implemented on 2D structured meshes [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
3D structured meshes [17, 37, 38, 39], and 2D unstructured meshes [40]. While most of these papers use
the Cartesian cut-cell method to model simple obstacles, an implementation on 3D unstructured meshes
is needed for more complex geometries. This is lacking in the current literature, but other multiphase
artificial compressibility methods have been implemented on unstructured meshes, both 2D [41, 42, 43, 44]
and 3D [45, 46, 47, 15, 48], as well as structured meshes [13, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60]. Consequently, there is room for further developing multiphase artificial compressibility methods on
unstructured meshes, especially for investigating the limiter convergence problem only briefly hinted at
by [48].

Capitalising on the powerful tools provided by OpenFOAM® | we generalise the specific variable-
density artificial-compressibility scheme in [22] to 3D unstructured meshes, testing the solver against
dam-break and hydrostatic pressure benchmarks. Even though the new solver does not use much of
the numerics in OpenFOAM® | it is useful to develop the solver in OpenFOAM® because the low-
level structure does not have to be built from scratch. A downside is that the form of parallelisation in
OpenFOAM® | domain decomposition, is not optimal for artificial compressibility as the waves propagate
locally [12]. However, we focus on the numerics in this paper, leaving the implementation of efficient
parallelisation to future work.

2. IMPLEMENTATION

The variable-density artificial-compressibility equations are

dp Op

E+E+V'(pu):0 (1)
%(pu)+%(pu)+v~(pu®u) =-Vp+ V- (u(Vu+Vvu')) +pg (2)
10p B

where p is density, u velocity, p pressure, u dynamic viscosity, g gravity, 5 the artificial compressibility
coefficient, t real-time, and 7 pseudo-time. Each real-time step requires convergence in pseudo-time, and
so two nested time loops are needed for the dual time stepping, as well as a Runge-Kutta loop. If the
solution converges in pseudo-time, then 9p/07 ~ 0 and the artificial compressibility coefficient 8 should
not impact the solution. However, when the maximum density is around p = 103 as for water, setting
B < 103 can result in instability and setting 3 > 10* can inhibit convergence, meaning dp/d7 =~ 0 is
not achieved [17]. Therefore some trial and error is required to pick a suitable value of §. In practice,
we have found that setting 8 = 1100 is just large enough to avoid instability, and so will have minimal
impact on convergence.

We solve the governing equations (1)-(3) by implementing in OpenFOAM® the numerical scheme
described in detail and implemented on 2D Cartesian meshes by [22]. In that study, a Godunov-type
scheme was developed that was explicit in pseudo-time and point-implicit in real-time, especially easy to
parallelise, and had a low memory footprint. Specifically, the explicit Runge-Kutta pseudo-time update
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equation is given by
1,m+1,0 +1,m
QT = Qi (4)

QUimts = @uttmLo (5)

?
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for s =1, ..., Smaz

Q?+1,m+1 — Q?+1,m+1,smaw (6)
where Q is the state vector, 2 the computational cell, F' the flux vector, I the cancellation matrix, B the
body force term, ag the Runge-Kutta coefficient, s,,4, the total number of Runge-Kutta stages, apy the
point-implicit scaling coefficient, n the current real-time iteration, m the current pseudo-time iteration,
and s the current Runge-Kutta stage. The real-time derivative is treated as a source term, calculated
point-implicitly with a backward-differencing scheme, and the fluxes are approximated using a Riemann
solver. For full details, see [22]. Note that we consider the inviscid flux only (i.e. we set u = 0), but the
viscous flux could be added easily using standard finite difference methods [17, 43].

The present paper goes further than [22], implementing the numerical scheme (4)—(6) in OpenFOAM®
so that it can be used on 3D unstructured meshes and in parallel. The new implementation uses the Roe
Riemann solver and the new pressure gradient calculation developed in [22]. It has a structure inspired
by foam-extend’s dbnsFoam [61]. However, it was written from scratch to take into account the different
governing equations and the fact that several cell-limited gradient schemes were added to OpenFOAM®
since dbnsFoam was released. Therefore, it has the potential to be forward-compatible with any limiters
added to OpenFOAM® in the future.

Switching to an unstructured mesh does require slightly changing the scheme from [22]. The difference
is in the MUSCL reconstruction step, which is where the primitive variables are extrapolated to cell faces
to provide the left and right states for the Riemann solver. This extrapolation relies upon a limited
gradient to avoid the introduction of new extrema, Gibbs-type oscillations. Unstructured meshes require
a different approach than structured meshes to do MUSCL reconstruction, and there are two components
to this difference: calculating the gradient and limiting the gradient.

First, the gradient calculation for Cartesian meshes is very simple, but unstructured meshes require
a method such as Green-Gauss or least-squares. These well-known standard methods are already im-
plemented in OpenFOAM® | so using them is simply a case of writing fvc: :grad() in the code and
specifying Gauss or leastSquares in fvSchemes. The gradients can be limited by specifying a limiter
alongside Gauss or leastSquares in fvSchemes. Note that this use of fvc::grad() is the only time we
use OpenFOAM® numerics here, but it is not the gradient calculation itself which is problematic.

The problem lies in the limiters, a problem that did not exist in the implementation for 2D Cartesian
meshes in [22]. The difference is that, while the limiter calculation for structured meshes is straightfor-
ward, involving constructing left- and right-sided gradients at each cell and applying a standard limiter
to these, it is not obvious what the left- and right-sided gradients would be on an unstructured mesh [62].
The standard way to overcome this problem is the framework of Barth and Jespersen [63], which is the
method implemented in the cell-limited gradient schemes in OpenFOAM® .

2.1. Barth and Jespersen. Let W be a scalar variable or one of the components of a vector variable.
In the context of a Godunov-type scheme, the idea is to construct a scalar limiter function ® € [0, 1] to
be used as

Wi =W; +Q,VW; - (x5 — x;) (7)

where VW; is gradient of the variable before limiting and Wy ; is the Riemann state at face f on the side
belonging to cell i. Then the Riemann states either side of the face can be put into the Riemann solver
to get the numerical flux. Barth and Jespersen [63] introduced a method that ensures the interpolated
variable W ; does not exceed that of the neighbouring cells in magnitude. Note that this means all the
neighbouring cells of cell ¢, not just the cell on the other side of face f.

Practically, the calculation loops over all the cell interfaces twice [64]. There is a loop to calculate the
maximum and minimum values in the neighbouring cells,

Wi,max = max (Wu mMaX;enei W]) (8)
Wi,min = min (Wzv minjenei Wj) ) (9)
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FIGURE 1. Comparison of ¢ (used in unstructured limiter ®) and v (used in Spekreijse’s
1D formulation) between different limiters.

and then a loop to determine how much limiting is required,

P L&f““) if Ajy>0

iof

®; = mi Ay min . ) 1
ming 4 ¢ ( Z= ) it A ;<0 (10)
1 if Ai,f =0
where
¢(y) = min(1, y) (11)
and
Ai,max = Wi,max - W; (12)
Ai,min = Wi,min - W; (13)
Aiﬁf =VW;- di’f (14)
di7f :Xf — X;. (15)

Thus, the quantity A; ¢ is a measure of how much W changes between the centre of cell i and the centre
of the cell interface f. The function ¢ clips A;  so that it does not exceed A min Or A; max in magnitude.
In the uniform 1D case, the Barth-Jespersen limiter can be recast into the Spekreijse [65] form

1
Wi =Wi+ S (ra) (Wi = Wiy) (16)
where the limiter is
1 . 4r 4

w(r)_2(T+1)mm(¢(r+1)’¢<r+l)) (17)

and it is applied to the ratio

Wipn —Wi;
— e 1

"W W, (18)

as shown in [66]. Both ¢ from (11) and ¢ from (17) are plotted in Figure 1.

The practical problem with this method is that the non-differentiability of (11) can inhibit convergence
in steady-state cases, instead leading to bounded odd-even modes. The simulation is not unstable; it
does not crash or blow up, but neither does it make any progress towards convergence. It would continue
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indefinitely if it was not stopped. This is a well-known problem [48, 64, 66, 67, 68, 69, 70, 71, 72, 73].
Fortunately, there are ways to overcome it, including replacing the non-differentiable function (11) with
a differentiable alternative and switching off the limiter in areas of relatively uniform flow. In the present
paper, we investigate these techniques in the context of artificial compressibility, where pseudo-time
convergence is required not just once, but at every real-time step, and thus the limiters must converge
more reliably than for a simple steady-state simulation.

2.2. Venkatakrishnan. Venkatakrishnan [66] addressed the convergence problem by replacing the non-
differentiable function (11) with the differentiable function

2
oyt 2y
As shown in Figure 1, this function is much smoother than (11), and the fact that ¢ > 1 for y > 2 does
not affect v, which is bounded by the Barth-Jespersen limiter for all 7.
A slight modification, not plotted in Figure 1, ensures that the limiter is also not activated in smooth
regions:

(19)

1 (A €D s +2A7 (A max e A
A f (A? max 287+ max A f+e7 if Aiy >0
) 2y 2 )
$,;, = min 1 (A mint€)A 5 +2A7 1A min . 4 20
! f Aip \ A7 Lin 247 j+ A0 minAg p+ef if Az’f <0 ( )
1 if Ai’f =0
where
2 3

and V; is the cell volume [64]. The parameter K is a threshold that marks the largest size of oscillations
untouched by the limiter.

If the gradient is small, then €7 > A%_min, Af’max, A minQimax and so ®; — 1, which means there is
no limiting. This stops residuals stalling due to numerical noise. By a similar argument, increasing K
increases ®; and so decreases the amount of limiting, and while this is more conducive to convergence to
a steady-state, it also increases the potential for Gibbs-type oscillations and thus instability. The more

convergent options are more unstable, that is, there is a trade-off between convergence and stability.

2.3. Michalak and Ollivier-Gooch. While Barth-Jespersen and Venkatakrishnan are the two standard
limiters [64], there are more options in the literature. For example, Michalak and Ollivier-Gooch [67]
replaced the function (11) with

Ply) ify<uy
$(y) = {1 W) | ' (22)
ify >y
where P(y) is the cubic polynomial with
P|0 =0 (23)
), =1 (24)
dP
= =1 25
dy lo (25)
dP
Z 1 =0 26
dy Yt ( )

and 1 < y; < 2is a threshold. The polynomial itself is not explicitly stated in [67], but a simple derivation
gives

P(y) =ay® + by*> +y (27)
1 2
0= — — = 28
vi ool (28)
3 1
b 2(1.% 2 ( 9)

As shown in Figure 1, the function ¢ is differentiable everywhere and does not exceed 1.

Like Venkatakrishnan, Michalak and Ollivier-Gooch also proposed switching off the limiter in uniform
regions of flow. However, they used a different method for this, smoothly transitioning to switching off
the limiter when

(Ai,max - Ai,min)2 < KSV; (30)
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This is done by defining

¢i =0+ (1—0:)¢ (31)
with ¢ from (22) and ¢; now plugged into (10). The indicator-type function is given by
1 if (A max — Aimin)? < K3V
o= s (<A«mx—§5;¢fin>2—K3Vi) if K3Vi < (Ajmax — Aimin)? < 2K3V; (32)
0 if (A max — Ai,min)2 > 2K3V;

with the smooth transition function s given by
s(y) =2y — 3y° + 1. (33)

2.4. Cell-limited schemes in OpenFOAM®. The above three limiters are already implemented in
OpenFOAM® | and can be easily accessed by specifying cellLimited, cellLimited<Venkatakrishnan>,
or cellLimited<cubic> respectively alongside the gradient calculation in fvSchemes. However, there
are some major problems with the limiters as implemented in the OpenFOAM® source code.

First, cellLimited<Venkatakrishnan> is not the same as the original limiter put forward by Venkatakr-
ishnan, and so it cannot be expected to have the same convergence properties shown in the original study
[66]. Onme difference is that it uses the unmodified version (19) instead of (20), and so may still be
active in uniform regions of flow. Another difference is that, regardless of the limiter, OpenFOAM®
always clips ® so that it never exceeds 1. As indeed noted in the source code documentation, this
clipping makes this particular limiter non-differentiable, and so it “no longer conforms to the basic prin-
ciples of this kind of limiter function” (VenkatakrishnanGradientLimiter.H, lines 53-54). The whole
reason Venkatakrishnan developed the limiter was so it could be differentiable, therefore it seems that
celllLimited<Venkatakrishnan> is of little practical use.

Second, cellLimited<cubic> is also not the same as the original limiter put forward by Michalak and
Ollivier-Gooch, and so cannot be expected to have the same convergence properties shown in the original
study [67] either. One difference is that it does not use (31), and therefore does not stop activation in
uniform regions of flow. Another difference is that the limiter uses an incorrect cubic polynomial, one
with a very large slope discontinuity at ¢(y;), not the one stated in (27)—(29).*

In this study, we do not attempt to fix cellLimited<Venkatakrishnan>; the automatic clipping of
® makes this too problematic. However, we do implement an improved version of cellLimited<cubic>
that corresponds to the limiter in the original paper [67], both by using the correct cubic polynomial and
by stopping activation in uniform regions of flow. This improved version is called
celllimited<Michalak>.f

Note that there are three other limited gradient schemes in OpenFOAM® : cellMDLimited, faceLimited,
and faceMDLimited. In the cellLimited limiters outlined above, one scalar limiter is applied to the z, y,
and z components of the gradient equally, irrespective of which neighbouring cells have the minimum and
maximum values. This can lead to excessive limiting. The cellMDLimited limiter takes an alternative
approach. Consider a cell with faces f = 1,2,...,F. Set (VW),; o = (VW); to be the gradient before
limiting. Loop through the faces f, calculating the extrapolate

Aiy=(VW)ig1-dig (34)
and then clipping the gradient in the direction from the cell centre to that face centre:

(VIW)i ot + di p 23820l A > A ax

[di,z 12
(VW)Z‘J = (vw)i,f—l + dz’f%;él’f if Ai_’f < Ai,min (35)
(VW) s—1 otherwise

for f = 1,2,...,F. The final iteration gives us the cellMDLimited gradient. Therefore, the limiter
“is applied to the gradient in each face direction separately” (cellMDLimitedGrad.H, lines 36-38) not,
as is sometimes suggested, to each coordinate direction separately. Meanwhile, the faceLimited and
faceMDLimited limiters are like the cellLimited and cellMDLimited limiters but clip the gradient be-
tween the face-neighbour values rather than the cell-neighbour values. None of these allow differentiable

*As of June 2021, the cubic polynomial has been fixed in the official development branches due to the work carried
out in the present paper. See the bug reports at https://develop.openfoam.com/Development/openfoam/-/issues/2113
[Accessed: 10 February 2022] and
https://bugs.openfoam.org/view.php?id=3684 [Accessed: 10 February 2022] for details. However, these bug fixes do not
stop activation in uniform regions of flow.

TThus cellLimited<Michalak> with K = 0 is equivalent to cellLimited<cubic> in the official development branches
from June 2021.
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functions as a run-time selectable option like cellLimited does. However, simulations using them are in-
cluded for comparison purposes in the following section, alongside cellLimited, cellLimited<Venkatakrishnan>,
cellLimited<cubic>, and the newly implemented cellLimited<Michalak>.

3. APPLICATION

The new solver was put through three benchmark tests: a simple dam break to illustrate the importance
of limiter choice, a more complicated dam break to compare the new solver against interFoam, and a
hydrostatic case to demonstrate that the solver can be run on arbitrary 3D unstructured meshes.

3.1. Convergence of limiters. First, we replicated from [22] the first real-time step of a dam break
on a uniform 2D Cartesian mesh. The mesh was a metre length in each direction, divided into 20 x 20
cells. Despite its simplicity, the mesh had to be stored as a 3D unstructured mesh in OpenFOAM®

However, due to its simplicity, the mesh was useful for isolating the effect of different limiters on
convergence. Initial conditions were set to be p = 1000 in the water and p = 1 in the air, with u = 0 and
p = 0 everywhere. The solver was run for one real-time step of size At = 0.01 seconds with the following
settings: three Runge-Kutta stages, an artificial compressibility coefficient of 8 = 1100, and a Courant
number for pseudo-time of 0.48 to satisfy the explicit stability constraint. The Green-Gauss gradient
calculation was chosen for p and u, and the corresponding limiter changed in each simulation to show its
effect on convergence.

Recall that the solution at each real-time step is reached when the solution converges in pseudo-
time. This is measured with residuals, here calculated as the maximum absolute difference between
a conserved variable in the current and previous pseudo-time steps. Figure 2 shows that, of all the
limiters available in OpenFOAM® as standard, only faceLimited converged in this case, and not very
smoothly. It might seem like the convergence problem was because all the OpenFOAM® limiters are
non-differentiable, as discussed in Section 2.4. However, Figure 2 shows that, despite being differentiable,
cellLimited<Michalak> (K = 0) did not converge either. It was only when the limiter was switched
off in areas of uniform flow that convergence was achieved (K = 1). Clearly, when K = 1, the newly
implemented limiter cellLimited<Michalak> has improved convergence properties compared to the
options already present in OpenFOAM® |

It is important to note that, although the residuals stalled for nearly all of the other limiters, there
was no instability and therefore the simulations did not blow up. Only a few cells failed to converge,
and they switched between very similar states, which meant the final results did not differ substantially
between the limiters. Consider Figure 3. The residuals only stalled in the top-left corner above the water
column. Once K was changed to 1 for cellLimited<Michalak>, the limiter switched off in this area of
uniform flow.

3.2. Comparison with interFoam. The new solver was tested with the damBreak tutorial to compare
its performance with interFoam. Initial conditions were set to be p = 1000 in the water and p = 1 in the
air, with u = 0 and p = 0 everywhere. The simulations were run until ¢ = 1.0 or until the residuals stalled,
whichever was sooner, with the following settings: one Runge-Kutta stage, an artificial compressibility
coefficient of 5 = 1100, and a Courant number for pseudo-time of 0.48 to satisfy the explicit stability
constraint. At each real-time step, the absolute tolerances for pseudo-time convergence were 0.0001 for
p, 0.01 for pu, and 0.01 for p. The Green-Gauss gradient calculation was chosen for p and u, and the
corresponding limiter changed along with the Courant number for real-time. Recall that real-time is
treated point-implicitly, and so there is no explicit stability constraint for the real-time Courant number.

Figure 4 shows how far each simulation could go. The residuals were prone to stalling when the tail
of the column of water hit either the obstacle or the far wall and, as expected, cellLimited<Michalak>
converged better than cellLimited. However, sometimes cellLimited<Michalak> stalled, and not
always with the same parameters. In this particular benchmark, when the real-time Courant number
was 1, the choice y; = 1.5 converged but y; = 2.0 stalled, and it was the other way around if the Courant
number was 2 or 5. Both choices of y; stalled if the Courant number was 0.5, perhaps due to the increased
number of real-time steps meaning there were more chances to stall. Moreover, the effect of switching
off the limiter in uniform regions of flow (that is, setting K > 0) was not noticeable. This suggests that
the standard slope limiters for unstructured meshes are not sufficiently robust for this solver, whether
the limiters already available in OpenFOAM® or the limiter implemented in this paper. Again, this
is nothing to do with stability. At no point did the simulations blow up or crash; they simply stopped
making progress towards convergence.

Despite this lack of convergence, we could use parameters that worked for this particular bench-
mark to compare the new solver, as it stands, with interFoam. Figures 56 show the results for
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cellLimited cellLimited< Venkatakrishnany

102~
10 M \
102~
1074 -
10~

cellLimited<cubic> (yt = 1.5) cellLimited<cubic> (yt = 2.0)
102-
o e m—
102~
1074 -
1078 -

cellLimited<Michalak> (yt = 1.5, K=0) cellLimited<Michalak> (yt = 2.0, K = 0)

10%-
10 & &
10-2_

1074 -
10°-
cellLimited<Michalak> (yt = 1.5, K= 1) cellLimited<Michalak> (yt = 2.0, K = 1)

10'
10'

cellMDLimited faceLimited

10?-
WM
10'

1 0 -
2000 4000 6000 8000

Residual

faceMDLimited
102-
10° -
102~
1074~

10~ . . . . I
0 2000 4000 6000 8000

Iteration

— rho — rhoU — p

FI1GURE 2. Convergence history for different gradient limiters.

celllimited<Michalak> with y; = 2.0, K = 1, and real-time Courant numbers of 2 and 5. Figure
5 includes results for the interFoam simulations, where the settings were as in the standard laminar
damBreak tutorial, but with zero viscosity and surface tension, and the atmosphere patch a wall. Now,
interFoam keeps the free surface sharp using a compression term? with coefficient cAlpha. Although
the compression term has a physical basis [74, p.117], in practice cAlpha is usually arbitrarily set to 1.
Setting cAlpha to 0 is equivalent to removing the interface compression term—mnot a practice acceptable
for practical simulations but useful nonetheless for this comparison. Figure 5 shows that the new solver
with a real-time Courant number of 2 had very similar behaviour to interFoam with a cAlpha of 0.
Surprisingly, when the real-time Courant number was increased to 5, the new solver still managed to cap-
ture the highly transient behaviour of the dam break, with only slightly less detail. This is encouraging

fOften called artificial compression, completely unrelated to artificial compressibility.
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FIGURE 3. Density field after 8000 pseudo-time iterations, and standard deviation of
velocity magnitude over pseudo-time iterations 7000-8000 (results saved every 100 iter-
ations).

because fewer total iterations are required for this larger real-time Courant number, as shown by Figure
6.

While the solver has potential, Figure 5 shows that the use of a high-resolution Godunov-type scheme is
not sufficient by itself to keep the interface sharp. Activating the interface compression term does indeed
keep the interface sharp when using interFoam, but this comes at the cost of a deformed free surface
(see the ¢ = 0.6 frame). It was hoped that a Godunov-type scheme might circumvent this problem, but
clearly that is not the case, and something like the interface compression term in interFoam is required to
keep the interface sharp. This has been done before in the context of Godunov-type schemes for artificial
compressibility coupled with VOF [57, 55], and would be a good next step once the convergence problem
has been solved.

3.3. Mesh from snappyHexMesh. The meshes in the previous benchmarks appeared structured, even if
they were not stored that way in OpenFOAM® . Therefore, to demonstrate that the solver can be run
on arbitrary meshes, it was also tested on a much less uniform mesh generated by snappyHexMesh. A
simple hydrostatic case was chosen to avoid the convergence problem and because the solution is known,
allowing us to test the impact of the pressure gradient calculation on the simulation.
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FIGURE 4. Effect of limiter and real-time Courant number on how far the simulation
gets and, if convergence is not achieved, when the stall occurs in real-time. Density field
shown to highlight problematic moments of the simulation.

The mesh from the iglooWithFridges tutorial was used, with all the boundary conditions changed
to walls, and the domain filled with water up to z = 2, as shown in Figure 7. As before, the initial
conditions for velocity and pressure were set to zero. The solver was run for one real-time step of
size At = 0.01 seconds with the following settings: one Runge-Kutta stage, an artificial compressibility
coefficient of 8 = 1100, and a Courant number for pseudo-time of 0.48 to satisfy the explicit stability
constraint. The absolute tolerances for pseudo-time convergence were 0.01 for p, 0.01 for pu, and 0.01
for p. The Green-Gauss gradient calculation was chosen for p and u, and the corresponding limiter set
to cellLimited<Michalak> with y; = 1.5 and K = 1.

Recall that the pressure gradient calculation used throughout this paper is from [22]. It is based on a
rearrangement of the momentum equation, and so it is automatically well-balanced, that is, is balances
exactly with the gravity source term when the velocities are zero. While there are other well-balanced
methods [19, 44, 75, 76, 77], this one is very easy to implement on unstructured meshes. Therefore, we
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investigate its effectiveness on unstructured meshes by comparing it to when the pressure gradient is
calculated instead by cellLimited<Michalak> with y; = 1.5 and K = 1.

Figure 8 shows that the method from [22] indeed performs better along the direction of gravity than
the limiter cellLimited<Michalak>, which is too limiting. The resulting difference in the pressure and
velocity in the direction of gravity is notable. The small but non-zero velocities in the other directions
can be attributed to the free surface not starting out entirely flat due to the irregular shape of the mesh.
Figure 9 shows that the improved performance of the well-balanced limiter comes at the cost of slower
convergence, but this is primarily due to the fact that it takes longer for the pressure field to converge to
the correct magnitude from p = 0. In any case, this test demonstrated that the new solver can be run on
3D unstructured meshes and that the pressure gradient calculation of [22] retains its well-balancedness,
although not as cleanly as on a 2D Cartesian mesh.

4. CONCLUSION

In OpenFOAM® | the traditional way to model free-surface flows is with the VOF solver interFoam,
which uses the PIMPLE algorithm based on matrix inversion. However, there are other ways to deal with
the lack of a pressure equation in the incompressible Navier-Stokes equations. In this paper, we focus
on the method of artificial compressibility, which scales better than matrix inversion as it requires less
communication between processors. Indeed, although artificial compressibility is not new, it is currently
very relevant due to its suitability for implementation on massively parallel architectures [12, 13, 14].

Despite its potential for efficient parallelisation, artificial compressibility has not been investigated
extensively for variable density flows (including free-surface flows), having only been implemented on 2D
and structured meshes so far [17, 19, 20, 22]. The present study harnesses OpenFOAM® to implement
artificial compressibility for variable density incompressible flows on 3D unstructured meshes. We found
that, since pseudo-time convergence is required at every real-time step, the slope limiter used in the
MUSCL reconstruction step is critical, and the limiters currently in OpenFOAM® are not fit for this
purpose. Therefore, we implemented Michalak and Ollivier-Gooch’s [67] limiter fully to avail of its
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FIGURE 6. Residuals for each pseudo-time iteration required throughout full damBreak
simulation to t = 1.

FIGURE 7. Water partially filling the igloo (converged solution with Vp from [22]).

improved convergence properties. When the results converge, they both compare well with interFoam
and are well-balanced, but even the improved limiter is not sufficiently robust to ensure convergence.
While the solver requires a mechanism to keep the free surface sharp as in interFoam, the convergence
problem is more urgent. Without convergence, there is no solution.

Consequently, further research should first focus on alternative routes to second-order accuracy than
Barth and Jespersen’s [63] framework for MUSCL. This could involve smoothing out the multidimensional
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igloo at © = 3.2,y = 3 for different Vp calculations.

limiter ce11MDLimited rather than cellLimited, or implementing the WENO (weighted essentially non-
oscillatory) [78] method. Of course, convergence is necessary but not sufficient for a good solution, and
so more work would need to be done after achieving robust convergence: a mechanism could be employed
to keep the interface sharp, the solver could be compared thoroughly with interFoam, and it could be
applied to practical cases. Ultimately, this will allow us to use Riemann solvers to capture the free surface
automatically and in a way that is particularly suited to the massively parallel architectures of today.
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