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Abstract. Convection in rotating spherical shells can be considered a simplified analogue of many

geophysical and astrophysical flows. Here, we investigate a direct numerical simulation of a dielectric
fluid in an electric central force field inducing thermo-electrohydrodynamic (TEHD) convection with

numerical methods to obtain an accurate solution of the transport equations describing rotating TEHD

convection in a non-isothermally heated spherical shell. The choice of the numerical model is based on the
International Space Station Experiment GeoFlow and its successor, AtmoFlow. The numerical methods

consist of a custom-developed finite volume solver based on the OpenFOAM® ecosystem that is not

limited to any geometric restrictions, a commercially developed finite element method, and a pseudo-
spectral method. This study aims to validate a custom-coded finite volume solver for investigating

TEHD convection for a parametric study of the AtmoFlow spherical shell experiment. The developed

TEHD finite volume solver showed solution errors of 1% or less compared to the other two implemented
numerical methods.

1. Introduction

Thermo-electrohydrodynamic (TEHD) convection is induced in a non-isothermal dielectric fluid in
a sufficiently strong electric field. Depending on the geometrical properties, such as plate, cylinder, or
spherical shell, different thresholds exist to induce a convective flow and are given by the critical Rayleigh
number, RaC . The critical values of the thresholds and the definition of RaC are found in a review by
Mutabazi et al. [1]. The first investigation of TEHD convection tracks back to the original experiments of
Seftleben and Braun [2–4] in the early to mid-1930s. These experiments considered a gas-filled cylinder
where an external field modified and enhanced the heat transport. Since then, the force densities that
described the convective transport mechanism were derived, and numerical models were used to define
the onset of convection, the convective behaviour, and its similarities to natural convection.

The numerical investigation that followed after the experiments of Senftleben and Braun considered
a definition of suitable critical Rayleigh numbers that are comparable to natural convection by linear
stability analysis in different geometries, see [5–9] and more complex flow states of larger forcing parameter
via the Pseudo Spectral Method (PSM) [8–13], the Finite Volume Method (FVM) [14–19], or the Finite
Element Method (FEM) [20] to name a few.

The present work extends the studies of Szabo et al. [18] and Gaillard et al. [21] from a two-dimensional
shell to a full spherical system using the FVM technique. In addition, dielectric heating is added to the
model compared to the prior studies. The full spherical consideration enables the consideration of inertia
wave development, especially in the third dimension, resulting out of system rotation. The latitudinal
variation of effective rotation strength and topography-induced vortex stretching or squeezing, e.g. in a
rotating spherical shell, can now be fully considered.

The PSM technique is a well-established numerical method used, e.g. in magnetohydrodynamic (MHD)
flows in cylindrical and spherical geometries, see [22–25], and known for its robust framework which is less
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computational intense. A great advantage is that it provides an easy implementation of rotational forcing
in spherical shell geometries that are considered as a simplified analogue of astrophysical and geophysical
flows with central force fields, like terrestrial gravity, are of importance [24]. Hence, this particular
method served not only in MHD but also in TEHD, see [12, 13]. So far, the PSM method has provided
complementary numerical results for the International Space Station experiment GeoFlow, a spherical
shell system used to study planetary interiors by an electric force field [8, 9, 26–29]. However, the use of
the PSM technique is mostly implemented and performs significantly better for axisymmetric domains,
and less complex boundary conditions. Using the FVM method, one of the most common numerical
methods in computational fluid dynamics, provides vast pre-processing and post-processing methods,
especially in the OpenFOAM® ecosystem. Numerical tools such as OpenFOAM® [30] enable complex
mesh geometries and easy implementation of additional multiphysical requirements. This is the case for
complex flows, where additional source terms and equations to the overall transport equations must be
solved, or the system is composed of multiregions. The FVM is in contrast to PSM, a valid alternative
technique, see Zaussinger et al. [31], which performed numerical simulations for the successor of the
GeoFlow experiment, the AtmoFlow spherical shell experiment used to study the analogy of planetary
atmospheres in a spherical shell system. However, all these solvers need adequate numerical benchmark
solutions, especially for custom-coded solvers, which is provided in this study to ensure the multiphysics
problem is solved correctly.

1.1. Aims and objectives. The aim of this study is to provide a benchmark solution for rotating
spherical shell convection with an applied electric central force field to induce TEHD convection, providing
an analogy to terrestrial gravity of planets [17]. For this particular task, we propose an FVM solver
based on the PIMPLE algorithm, which is a combination of the Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm and the Pressure Implicit with Split Operator (PISO) algorithm
within the OpenFOAM® ecosystem. A more detailed explanation of the solver is given in the numerical
methods section 3.1. The FVM solver is not restricted to spherical shell systems and is able to model
other geometrical entities without further modification. The composition of the solver is designed to
enable further development in the OpenFOAM® environment, including multi-region and multiphysics
for more complex cases [32]. A sample case and a manual of the solver are found via the URL linked to
the GitHub repository.

The benchmark exercise is based on the previously published TEHD spherical shell convection ex-
periment given by Travnikov et al. [13]. To ensure reliable solutions for the FVM solver, the PSM and
FEM serve as benchmark solutions. The choice to extend the study by Travnikov refers to the com-
plexity of the interactions of the underlying physical processes, such as spherical shell rotation, electric
forcing, and dielectric heating. The present study describes the implemented equations and commonly
established modelling approaches to characterise rotating TEHD convection in a spherical shell. The
parametric study by Travnikov et al. [13] provides three basic flow regimes that are steady, axisym-
metric, and equatorial symmetric, avoiding a spatial and temporal averaging of solutions providing a
well-suited benchmark exercise for different numerical codes. This study and the custom-developed FVM
solver intend to contribute towards the search for efficient, high-accuracy methods to solve TEHD-related
convection problems.

2. Model formulation

This section deals with the problem geometry and the general form of the governing equations to
solve the evolving TEHD convection in the spherical shell. This is followed by the choice of selected
parameters, the numerical input, and the diagnostics to compare the different solvers.

2.1. Problem geometry. We consider a rotating TEHD convection of a Boussinesq dielectric fluid
confined in a spherical shell between the inner radius, R1, and outer radius, R2, providing a radius ratio,
η, and a shell thickness of L = R2 −R1 defined as the reference length. Spherical rotation is provided by
a constant angular velocity, Ω, around the z-axis given by (0, 0,Ω). The spherical shells’ temperatures
are maintained to mimic a planet’s atmosphere, with a heated equatorial region and cooled poles. The
inner shell’s temperature is defined by

Tin(θ) =

(
T1 + T2

2

)
+

(
T1 − T2

2

)
sinn(θ) (1)

and the outer shell’s temperature by

Tout(θ) = T2 +

(
T1 − T2

2

)
cosh(ath cos(θ))− cosh(ath)

1− cosh(ath)
(2)
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Figure 1. Temperature boundary conditions
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Figure 2. Schematic of the numerical model with boundary conditions

where θ is the inclination angle, T1 the temperature at the equator, T2 the temperature at each pole,
providing a temperature difference ∆T = T1 − T2 with T1 > T2.

1 The variables n and ath are used for
a planetary atmospheric-like boundary condition equal to 100 and 50, respectively. Velocity boundary
conditions are no-slip at all walls and are impermeable. The temperature variation of Tin and Tout over
the inner and outer shell are plotted in Figure 1(a) and 1(b), respectively. To induce TEHD convection,
an alternating electric potential, V (t), is applied at R1, while R2 is grounded. All boundary conditions
are given in a schematic representation in Figure 2.

1The temperature difference, ∆T , is defined by the difference in temperature given at the equator and poles. This definition
differs from the one of Travnikov et al. [13] given by (T1 − T2)/2 and is also reflected in the Rayleigh number, see eq.(22).
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2.2. Governing equations. Exposing a dielectric fluid to an electric field creates a volumetric body
force that is derived from the Kortweg-Helmholtz force density, written as

fE = ρeE+∇
[
ρ

(
∂ϵ

∂ρ

)
T

E2

2

]
− 1

2
E2∇ϵ (3)

where ρe is the electric charge density, E the electric field, ρ the fluid’s density and ϵ the electric per-
mittivity. A full derivation of fE is given by Landau et al. [33]. The first term on the right-hand side
of eq.(3) is known as the Coulomb force or electrophoretic force. In the special case of static electric
or low-frequency electric fields, the change in ρe may be greater than in ϵ, and the Coulomb force will
dominate the flow. Suppose the electric field’s frequency, f , is larger than the viscous timescale, τν , the
fluid is unable to respond to changes in E and the Coulomb force has no effect as long as f >> τ−1

e , where
τe is the charge relaxation time defined by ϵ/σe with σe being the electric conductivity of the dielectric
fluid [7,34,35]. For high-frequency electric fields, the Coulomb force may be neglected. Hence, the second
and third force terms on the right-hand side of eq.(3) become dominant, as both owe a static component
with |E|2. With an incompressible consideration and no mobile boundaries, the second term, the elec-
trostrictive force, will have no influence on fluid motion and can be lumped into the pressure and treated
as an electrostatic pressure term similar to the static head. The remaining term is the dielectrophoretic
force (DEP) density, written as

fDEP = −1

2
E2∇ϵ (T ) (4)

which owes a temperature dependence on electrical permittivity. Non-isothermal perturbation in the
electric permittivity and in the presence of a high-frequency electric field can induce a thermally driven
buoyant flow [34,36,37].

With the above problem definition, we consider an incompressible, Newtonian dielectric fluid free of
electric charges. The continuity, momentum and energy equations read

∇ · u = 0 (5)

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ ν∇2u+

1

ρ0
fi (6)

∂T

∂t
+ (u · ∇)T = κ∇2T +HE (7)

where u is the velocity, t the time, ρ0 the density at reference temperature T0, p the pressure, ν the
kinematic viscosity, T the temperature, κ the thermal diffusivity and fi represents any additional force
density acting on the fluid. The parameter HE is written as

HE =
2πfϵ0ϵrhdiss

ρ0cp
|E|2 (8)

and known as the dielectric heating parameter, where f is the frequency of the alternating electric field,
ϵ0 the permittivity of free space, ϵr the relative permittivity, hdiss the dielectric loss factor, also known
as tan δ counting for dielectric losses [13] and cp the heat capacity. Those equations are derived from the
work of Travnikov et al. [13]. Successful implementation and validation for the momentum equation are
given by [6,15] together with energy equation and the additional dielectric heating source term by [5,38].
The set of these equations are adapted for the OpenFOAM ecosystem in the present work.

In the past decades, dielectric losses resulting in dielectric heating have been neglected, especially for
small AC frequencies [37]. However, highly polar fluids may cause significant dielectric heating influenc-
ing the thermal flow, which can be accounted for by HE . Maxwell’s equations govern the alternating
electric field written as V (t) =

√
2V0 sin(2πft) and counts for the temperature differences in the electric

permittivity. For a high-frequency electric field compared to the viscous timescale, τν = L2/ν, only
the time-averaged DEP force can induce the convective motion of the fluid. This assumption is valid
according to Turnball [39] and Stiles [37]. Hence, the Maxwell’s equations reduce to Gauss’s law, which
reads

∇ · [ϵ (T )E] = 0, with E = −∇V0 (9)

where ϕ is the electric potential.
The temperature-dependent fluid properties are governed by the Boussinesq-Oberbeck approximation,

stating that all parameters are held constant with T except for the fluid’s density in the centrifugal
buoyancy term and the electric permittivity where buoyancy-driven flow may occur [36]. One can now
express the thermal variations in density as

ρ(T ) = ρ0(1− α(T − T0)) (10)
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where α is the thermal expansion coefficient. An equivalent equation of temperature deviation in ϵ(T ) is
expressed by

ϵ(T ) = ϵ0ϵr(1− e(T − T0)) (11)

where e is the thermal variation coefficient of the electric permittivity. The eq.(10) and eq.(11) are
linearly dependent on temperature and valid as long as the imposed temperature difference is small,
see [13,18,21,40].

As outlined above, the volumetric forces acting on the fluid can now be defined in a non-isothermal
rotating dielectric fluid in the presence of the effective electric potential, V0. Considering a Boussinesq
dielectric fluid, the DEP force in eq.(4) can be rewritten as

fDEP =
ϵ0ϵre

2
(−∇V0)

2 ∇T. (12)

with the electrohydrodynamic Boussineseq eq. given in eq.(11). Spherical shell rotation is governed by
the rotating framework of reference and expressed by the Coriolis force density

fCo = −2ρ0 Ω× u (13)

and centrifugal force density,
fCf = −ρ0 Ω× (Ω× r) (14)

where r is the radial vector from the axis of rotation. Since the imposed rotation Ω is time invariant
∂Ω/∂t = 0, the Euler force is absent. For rapid rotating systems, the centrifugal force can cause centrifugal
Rayleigh-Bénard convection in a non-isothermal fluid, see [41, 42]. Density variations in the centrifugal
force density may become important where higher dense fluid is displaced away for the axis of rotation,
leading to an additional acceleration term given by

fCb = ρ0 α∆T [Ω× (Ω× r)] (15)

known as the centrifugal buoyancy force density [12,13,21].
The pressure, p, in the momentum eq.(6) can now be modified and includes the prior defined elec-

trostrictive force lumped into the pressure term as

P = p− 1

2

(
∂ϵ

∂ρ

)
T

E2 (16)

where the centrifugal force density in eq.(14) can either be left as a force density in the momentum
equation or included in the pressure term by 1/2Ω2r2 as suggested by [43]. For the sake of simplicity
and the way how the finite volume solver is implemented, the centrifugal force density remains in the
momentum equation.

The governing equations, eq.(5)-(7) and eq.(9) can be formulated in dimensionless form using an
appropriate scaling. To be consistent with Travnikov et al. [13], we use the thermal timescale, which is
given by the characteristic length of the system, L = R2 −R1, and the thermal diffusivity, κ and written
as τκ = L2/κ. Hence, the following non-dimensional variables are obtained

u∗ = u
L

κ
, t∗ = t

κ

L2
, ∇∗ = L∇, , P ∗ = P

L2

ρ0κ2
, T ∗ =

T − T0

∆T
, E∗ = E

L

V0

(17)

and one can formulate the continuity, momentum, energy and Gauss equation with the force densities
given in eq.(12) -(15) and the modified pressure in eq.(16) in non-dimensional form2

∇ · u = 0 (18)

∂u

∂t
+ (u · ∇)u =−∇P + Pr∇2u

− Pr
√
Ta ez × u

− 1

4
Pr2 Ta r s

+
1

4
Pr2 Ta (α∆T )Tr s

+ Pr RaE |E|2∇T

(19)

∂T

∂t
+ (u · ∇)T = ∇2T +

RaE
RaT

|E|2 (20)

∇ ·E− e∆T ∇ · (T E) = 0, with E = −∇ϑ (21)

2Note that for the sake of clarity the asterisk, which denotes the dimensionless variables above are revoked to avoid
overloading of symbols. The following equations are all dimensionless:
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where ϑ is the non-dimensional electric potential, s is defined by − (sin θ er + cos θ eθ) with the unit
norm vectors er, eθ and ez in radial, meridional and vertical direction, respectively. The defined set
of equations is given in the Cartesian coordinate system and is used for the FVM and FEM method of
solution. In contrast, the Polar coordinate system is used for the PSM solution method with r the radius,
φ the azimuth angle and θ the inclination angle, see Section 3.3. The non-dimensional equations are
governed by the Prandtl number, Pr, the Taylor number, Ta and the Rayleigh numbers, RaE , and RaT ,
defined by

Pr =
ν

κ
, Ta =

4Ω2L4

ν2
, RaE =

ϵ0ϵre∆TV 2
0

2ρ0νκ

RaT =
cpe∆T 2

4νπfhdiss

(22)

and provide an indication of the relative importance of buoyant forcing to Coriolis forcing and thermal
forcing in rotating TEHD convection.3

Table 1. Parameter space and regimes after Travnikov et al. [13].

Regime Ta RaE RaT

I 103 0 -
II 1.5 · 104 1.9182 · 104 2.0213 · 105
III 103 105 2.0213 · 105

2.3. Parameter choice, numerical input and evaluation. To compare the methods of solutions
with one another, the choice was made to use the basic flow of three distinct regimes occurring in a
spherical shell geometry with aspect ratio η = 0.7 defined by Travnikov et al. [13]. The so-called basic
flow is steady-state, symmetric around the rotation axis and symmetric to the equatorial plane. Hence,
the uncertainty can be evaluated directly rather than using spatial and temporal averaging over a period
of conductive time scales. While only three basic flow regimes exist, only three different parameters were
selected. These regimes occur as a result of the competition between buoyancy, Coriolis, and centrifugal
forces. The forcing parameters of the three regimes are given in Table 1 and investigate a rotating
dominated flow regime in regime (I), a combined regime of almost equivalent forcing strength in thermal
and rotational forcing in regime (II) and a thermally forced dominated regime with small rotational
forcing in regime (III). The selected forcing parameters are chosen in a much larger parametric study;
see [13].

The system is solved in non-dimensional form by using the forcing parameters introduced in eq.(22)
with the values given in Table 1 for each regime. Hence, the boundary conditions read in the non-
dimensional form as 

u = 0, T = Tin(θ), ϑ = 1, at r =
η

1− η

u = 0, T = Tout(θ), ϑ = 0, at r =
1

1− η

(23)

where T1 and T2 in eq.(2.1) and eq.(2.1) have the value 1 and 0, respectively. As we benchmark the
methods of solution with the extended study of Travnikov et al. [13], the values for the radius ratio
and the fluid properties are kept fixed to Pr = 10.43, α∆T = 0.0361 and e∆T = 0.0241 to limit the
parameter space and explorer only the three basic flow regimes. Quantities such as α∆T and e∆T
are non-dimensional parameters that can be denoted as γα and γe and are known as the volumetric
expansion parameter [19], and the thermoelectric parameter, respectively. One has to note that the onset
of convection is dependent on these parameters, see [1, 5–7].

The numerical evaluation and benchmark of the methods of solutions are compared by local, velocity
and temperature profiles at the equator and pole planes of the system and by the heat flux across the
inner and outer shell given by

Q =

∫
∂T

∂r
dS (24)

3The definition of the Rayleigh number differs by a factor of two compared to Travnikov et al. [13] and refers to the different
definition of the temperature difference which was mentioned in Section 2.1 earlier. The choice was made to use the current
definition, which clearly implements the correct governing equations in the FVM solver.
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where S is the inner or outer spherical shell surface, respectively. An indication of the intensity of the
overall heat flux across the shell’s surfaces can be given by the Nusselt number written as

Nu =
Qconv +Qcond

Qcond
(25)

where Qconv and Qcond are the convective and conductive heat flux, respectively. The conductive heat
flux is defined after Travnikov et al. [13] and only counts for the conductive transport in the absence of
the electric voltage where dielectric heating is not present.

3. Numerical methods of solution and resolution requirements

In the following section, the numerical methods of solution are introduced. This concerns the numer-
ical principle of the finite volume, finite element, and pseudo-spectral methods with their discretisation
schemes and the solvers used.

3.1. Finite volume method. The finite volume method used is based on the open-source CFD Toolbox
for engineering and multiphysics problems named OpenFOAM. The code is open-source, written in C++
and supports parallelisation using MPI libraries. The finite volume method discretises the fluid region
in small volumes, known as cells. All applied forces on the fluid volume result in a flux passing the cell
faces, obeying the continuity equation. Gradients are locally built using the finite area of a cell and
solved using the OpenFOAM® in-house named algorithm PIMPLE. The name is a combination of two
algorithms, namely PISO and SIMPLE. Both algorithms are able to solve pressure and velocity-coupled
equations. While the SIMPLE algorithm is a steady-state solution only solver solving iteratively until
a predefined residual is achieved where the solution converges, the PISO algorithm is used for transient
solutions where the CFL number remains below 1 to ensure an accurate solution. Combining both
algorithms in terms of using a SIMPLE loop for the overall correction with a nested PISO loop for
transient solutions, the solver is able to solve transient problems with larger CFL values than 1, which
increases the overall computational performance significantly. The working principle is based on the PISO
loop that is repeated by the SIMPLE loop until the residual is met. The pressure-velocity coupling is
then solved by the algorithm and includes all quantities lumped in the pressure term, e.g., p = F (u) [44].

The pressure matrix results from the fluxes of the volumetric forces and is solved implicitly. For
solving the energy and Gauss equation, a segregated step is used to count for all forces acting on the
control volume. The solution is given when the residual is below a predefined threshold at a given time
step before the loop restarts. A common value to ensure a converged solution is found for residuals
below 1e − 4 and is usually reached between two to five PIMPLE iterations. The segregated step of
solving the divergence of the electrostatic Gauss equation is done implicitly to be able to find solutions
when sharp edges or geometries are present, which provides better numerical convergence than using an
explicit scheme. All other equations are solved with a corrector loop starting with the Gauss matrix,
which processes simultaneously the electric force field. Thereafter, the pressure matrix is solved, including
two non-orthogonal iterations to ensure convergence, as the used hexahedron mesh has slightly skewed
cells when geometries with curvatures are used. In the final step, the temperature matrix is solved by
including the dielectric heat generation caused by the alternating electric field.

The numerical model is discretised such that all operations, like differentiation or integration and
discrete methods, need to be applied. As no turbulence modelling is used, discretisation is conservative.
A second-order scheme for divergence and Laplace operation with a central difference scheme is used,
given by

Φe =
ΦE +ΦW

2
(26)

which is applied due to their low numerical dissipation properties [44]. The trade-off is dispersion errors,
which require an enhanced mesh and more iteration to convergence. The mesh is structured and com-
posed of hexahedron cells to guarantee maximum orthogonality. The least squares scheme is chosen for
gradient operations. In OpenFOAM the least-squares gradient calculates the gradient using all cell faces
geometric instead of cell centroids. This enhanced the robustness of the gradient calculation. The time
discretisation is performed using a Crank-Nicholson (CN) scheme. This ensures small numerical dissi-
pation while maintaining numerical stability. The simulations are processed using CN’s blend value 0.9.
After discretising, all the matrices are built and solved implicitly to ensure faster calculation and more
robustness. Symmetrical matrices like the pressure and electrical field matrices use a Geometric Adaptive
Multigrid (GAMG) solver with a V-cycle [30]. This solver coarsens the mesh, solving fewer degrees of
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Figure 3. The Nusselt number, Nu ( ) and volumetric averaged kinetic energy Ekin

( ) plotted versus the number of elements for the grid independence of the FVM and
FEM technique at Rayleigh number RaE = 2 · 105 and Taylor number Ta = 103

freedom, and then interpolates again on all the degrees of freedom for the full grid size. Hence, correc-
tor cycles are usual practices to enforce convergence. For non-symmetric matrices like the temperature
matrix, a bi-conjugate gradient solver is used.

Figure 3 depicts the grid independence test via the Nusselt number and the kinetic energy for the
largest forcing parameter for the FVM and FEM in (a) and (b), respectively. Reliable solutions are found
for grid sizes above 41 million cells and 1.9 for the FVM and FEM, respectively.

3.2. Finite element method. The numerical model is solved with the boundary conditions given in
eq.(23) by a finite element technique developed by COMSOL [45]. The FEM was benchmarked for
thermal convection by using the de Vahl Davis [46] benchmark solution for natural convection in an
air-filled cavity. The benchmark provided a qualitative good agreement with a difference in Nu of less
than 0.76%. The complete benchmark solution is found in Table 3 in [47].

A tetrahedral mesh was generated and showed convergence of reliable solutions for a grid size of about
half a million elements. To provide a finer resolution of the temperature and velocity, a total of 1,837,349
elements were chosen. The unstructured mesh provided more flexibility about the distribution of elements
to compensate for equal element size in the domain. On the outer shell, 200 elements are in azimuthal
and meridional direction, whereas in the inner shell, the number of elements is scaled with 200η. The
volume could, therefore, be meshed with relatively uniform-sized tetrahedral elements attached to the
boundary elements by using two boundary layers with a stretching factor of 1.2 towards the inner and
outer shells.

The numerical model was solved in two solution stages. The first stage solved the Gauss equation
and the conductive base state. The solution was then used as initial values for the time evolution of
the transient solvers. A quadratic discretisation is used to solve the static Maxwell equations. For
temperature, a quadratic Lagrange and a second-order element discretisation are used for pressure and
velocity. The pressure and velocity are solved by the Generalized Minimum Residual (GMRES) iterative
solver, which uses a smoothed aggregation algebraic multigrid with an F-cycle. The temperature equation
is also solved by a GMRES using a geometric multigrid solver with a V-cycle. The static Maxwell
equations are solved by a segregated step iteratively by a conjugate gradient solver. All solvers run
simultaneously, such that the temperature variations are coupled with the non-isothermal flow and the
Gauss equation. Consistent stabilisation is provided by a streamline and crosswind diffusion. The time is
discretised by a Backward Differentiation Formula (BDF) method, also known as backward Euler, which
is an implicit solver of second-order accuracy. A free time stepping is used to take larger or smaller time
steps as required to satisfy the specified tolerances.

3.3. Pseudo spectral method. The pseudo-spectral method developed by Hollerbach [22] is a Fortran-
based code for simulating geophysical flows. The code runs on a single core and is, to the best of the
authors’ knowledge, not yet parallelised. The PSM code uses the spherical coordinate system (r, θ, φ) as
outlined already above in section 2.2 where the Cartesian unit norm vectors relate to the spherical unit
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Table 2. Mesh structure and computational effort normalised for convergence and CPU
time.

FVM (OpenFOAM®) FEM PSM

Element type Structured hexahedron Unstructured tetrahedral Points
Points in r − θ − φ 120× 960× 960 Mixed 50× 420×−
Approx normalized
convergence time

12h 103h 72h

Approx normalized
convergence CPU time

4608h 2060h 72h

norm vectors by a rotation matrix as follows ex
ey
ez

 =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 er
eθ
eφ

 . (27)

The velocity is decomposed into poloidal, Φ, and toroidal, Ψ, contributions given by

u = ∇×∇× (Φ er) +∇× (Ψ er). (28)

which has the advantage that the continuity is automatically obeyed. As outlined in section 2.3 the
specified regimes are quasi-stationary and axisymmetric and hence depend only on r and θ where ∂/∂φ =
0. Zero points are therefore defined in the direction of φ. The equations for Φ and Ψ are obtained by
applying the operators ∇×∇× and ∇×, respectively, which eliminates the pressure of the systems, and
one arrives at

1

r2
∇2

s

(
∂2

∂r2
+

∇2
s

r2

)[
∂

∂t
−
(

∂2

∂r2
+

∇2
s

r2

)]
Φ(t, r, θ)

= (∇×∇×G)r

(29)

− 1

r2
∇2

s

[
∂

∂t
−
(

∂2

∂r2
+

∇2
s

r2

)]
Ψ(t, r, θ) = (∇×G)r, (30)

where G are the lumped forcing parameters given by

G =− Pr RaET ∇[∇ϑ0(r) +∇ϑ (r, θ)]2

− Pr2
√
Ta ez × u

+
1

4
Pr2 Ta γα Tr sin θ s

(31)

suggesting the following vector operator

∇2
s · =

1

sin θ

∂

∂θ

(
sin θ

∂·
∂θ

)
(32)

The velocity boundary conditions in eq.(23) read for the PSM
Ψ = 0, Φ = 0,

∂Φ

∂r
= 0, at r =

η

1− η

Ψ = 0, Φ = 0,
∂Φ

∂r
= 0, at r =

1

1− η

(33)

and are in no-slip conditions. Each scalar function of poloidal and toroidal velocity can be represented
in terms of Chebyshev polynomials and spherical harmonics according to

Φ =

LU∑
ℓ=1

g̃ℓ(r, t)P
0
ℓ (cos θ =

LU∑
ℓ=1

KU+4∑
k=1

gkℓ(t)Tk−1(x)P
0
ℓ (cos θ), (34)

Ψ =

LU∑
ℓ=1

f̃cℓ(r, t)P
0
ℓ (cos θ) =

LU∑
ℓ=1

KU+2∑
k=1

(fckℓ(t))Tk−1(x)P
0
ℓ (cos θ), (35)
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A similar expression can be formulated for the temperature by

T =

LT∑
ℓ=0

t̃cℓ(r, t)P
0
ℓ (cos θ) =

LT∑
ℓ=0

KT+2∑
k=1

tckℓ(t)Tk−1(x)P
0
ℓ (cos θ), (36)

and analogous to the electric potential for solving the Gauss equation by

ϑ =

LP∑
ℓ=0

p̃cℓ(r, t)P
0
ℓ (cos θ) =

LP∑
ℓ=0

KP+2∑
k=1

pckℓ(t)Tk−1(x)P
0
ℓ (cos θ). (37)

The mapping is performed by

r(x) =
1

2

[
x+

1 + η

1− η

]
(38)

and used to transform Chebyshev polynomials defined in the interval [−1, 1] into the domain r ∈ [η/(1−
η), 1/(1 − η]. The truncation order for the Chebyshev polynomials is KU, KT, KP for the poloidal and
toroidal potentials, the temperature and electrical potential, respectively. The corresponding truncation
orders for the Legendre polynomials are given by LU, LT, LP. Note that the collocation points were
found analytically as roots of the Chebyshev polynomial TKN(x) in the radial direction

xj = − cos

[
(2j − 1)π

2KN

]
(39)

and numerically as roots of the Legendre polynomial PLN(cos θ) in the latitudinal one. The 3/2 rule is
used as a connection between the truncation order and a number of the collocation points

KN = 3/2max(KU,KT ), LN = 3/2max(LU,LT ). (40)

Time-dependent spectral coefficients are calculated due to the predictor-corrector method. To provide
reliable solutions for temperature and velocity, the Nusselt number and critical Rayleigh number, RaEc,
and the frequency of the perturbation as fixed ∆t are used as control parameters to perform the conver-
gence analysis. The time step varied between 10−4 and 10−5. To fully resolve the velocity field according
to the work of Travnikov et al. [13], 20 Chebyshev polynomials and up to 160 Legendre polynomials
were required. With the specific boundary conditions for the temperature, a maximum of 30 Chebyshev
polynomials and up to 280 Legendre polynomials were necessary to calculate the temperature field accu-
rately. For ensuring reliable results, sufficient points had to be selected for computation. With the 3/2
rule named in eq.(40) results in at least 45 points in the radial direction and 420 points in the meridional
direction. A slightly larger number of points is used for the radial direction and summarised in Table 2.
The azimuthal direction has no points resolved since the calculations are 2D for the PSM.

3.4. Spatial discretion and time of solution. While the discretisation between the methods of so-
lution varies and is not the same, one has to pay special attention to the numerical method used to
solve the transport equations. As the PSM and FEM methods use nodal points in the fluid domain,
the solution procedure uses polynomials and shape functions, respectively. This is different from the
FVM methods that used fluxes across cell faces, and calculates from those fluxes balance the information
at the cell centroid. This method has the limitation of having pointwise information from cell to cell
instead of a smooth transition. PSM and FEM can therefore reach accurate solutions with comparable
fewer points when discretising the mesh as FVM. Also, the pseudo-spectral method, for example, uses
50 Chebyshev polynomials per point in the radial direction for the velocity, resulting in 1000 degrees of
freedom for the PSM method. The computational effort to solve all equations is reflected in the solution
time. Temporal convergence of the numerical models is ensured by running the simulations for at least
10 thermal time scales. A quasi-stationary state was given after a settling period of about two thermal
time scales. An overview of all three methods is given in Table 2 with the respective mesh indicating a
much faster solution for the PSM and FEM compared to the FVM.

Comparing all methods suggests a disadvantage for the OpenFOAM® solver in computational cost
when compared to the other two methods. From a first point of view, the simulation time of the PSM
method shows a significant advantage; however, it is performed in 2D, not 3D. While the PSM method
is capable of solving in 3D, it is not required here as the cases considered here can be computed in
2D, resulting in less computational time compared to the 3D cases of FVM and FEM. In addition, the
PSM method used is not yet parallelised and requires a large computational time when processing on a
single core, see [13]. The computational advantage of the PSM is limited to more complex geometries
and asymmetric properties when compared to the other methods. One can now conclude that the FVM
has a broader possibility of applications compared to the PSM, even when comparing the non-trivial



Modelling thermo-electrohydrodynamic convection in rotating spherical shell using OpenFOAM® 11

PSM

FEM

FVM

FVM

(a) Ta = 103 RaE = 0

PSM

FEM

FVM

FVM

(b) Ta = 1.5 · 104 RaE = 19182

PSM

FEM

FVM

FVM

(c) Ta = 103 RaE = 1 · 105

Figure 4. Temperature contour plot with range (0,0.05,1) of the north-south plane of
the spherical shell. The panels represent the regimes (I-III) from left to right, respectively.
Each panel consists of a quarter of the individual solution method PSM and FEM, while
the solution of FVM is given twice to compare the contours of each solution.

implementation of parallel computing of the PSM. Comparing the commercial FEM solver with FVM
requires half of the computational time of the FVM. However, commercial solvers usually require a license,
which may also limit the parallel scalability depending on the acquired license. The emerging field of
TEHD requires flexibility for both the development and computation with an open-source environment
like OpenFOAM® provides.

4. Results and discussion

In this section, we present the results of the three different methods of solution. The results are given
after the settling period, when the system had equilibrated to a quasi-steady state for each regime (I-
III) representing the basic flow. The three regimes of the basic flow are evaluated by the temperature
distribution, the convective flow, and the heat transfer.

4.1. Temperature fields. Figure 4 presents a north-south plane of the spherical shell’s temperature
distribution of the basic flow. To compare the individual methods of solution, the temperature plane is
composed of the PSM and FEM solution and enclosed by the solution of the FVM method to compare
the fitting of the contours.

The first regime (I) investigates the rotating regime without electric forcing RaE = 0 and a relatively
small Taylor number of Ta = 103. The observed temperature field is similar to the conductive result.
However, the contours tend to bend inwards at the equator and outwards at the poles of the spherical
shell, suggesting convection that only occurs due to centrifugal buoyancy. Hence, the centrifugal force
is the only force responsible for the formation of the basic flow. The basic flow’s thermal structure is
preserved for larger Taylor numbers and small electric Rayleigh numbers.

2.33 2.83 3.33

0

0.25

0.5

r

T

(a) Ta = 103 RaE = 0

2.33 2.83 3.33

0

0.25

0.5

r

T

(b) Ta = 1.5 · 104 RaE = 19182

2.33 2.83 3.33

0

0.25

0.5

r

T

(c) Ta = 103 RaE = 1 · 105

Figure 5. Radial temperature distribution at the North Pole (θ = 0) for all basic flow
regimes and methods of solution. FVM ( ), FEM ( ) and PSM ( ).
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T

(a) Ta = 103 RaE = 0
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0.5

0.75

1

r

T

(b) Ta = 1.5 · 104 RaE = 19182

2.33 2.83 3.33

0.5

0.75

1

r

T

(c) Ta = 103 RaE = 1 · 105

Figure 6. Radial temperature distribution at the equator (θ = π/2) for all basic flow
regimes and methods of solution. FVM ( ) and FEM ( ) and PSM ( ).

The second regime (II) in the middle panel is observed when RaE increases in strength. A new basic
flow is observed, where the temperature contours tend to bend outwards, whereas the contours at the
poles bend inwards. The change in the regime suggests a convective motion of fluid related to the radial
electric forcing. The overall temperature distribution is mushroom-shaped at the equator, with a plume
of cold fluid at the poles.

The last and third regime (III) is present when the electric Rayleigh number is large RaE = O (105)
and the Taylor number is small Ta = O (103). The mushroom-shaped temperature field extends from
the equatorial region towards the poles, suggesting strong convective motion due to the large RaE and
small Ta.

While matching the thermal contours provides only a qualitative agreement, a quantitative comparison
between the methods is given in Figure 5 and Figure 6. Both figures present the radial temperature
distribution between the inner and outer shell at the North Pole and equator, respectively. For regime
(I) a logarithmic decay of the temperature is observed between the inner and outer shell, suggesting a
temperature distribution close to the onset of convection. The second regime (II) shows a logarithmic
decrease and indicates a convective flow as thermal boundary layers, δT , tend to appear. These are more
pronounced for the regime (III), where the thickness decreases. Comparing both panels in Figure 5 and
Figure 6 with one another, no significant difference is found across the three solution methods providing
a well-matched temperature profile.

PSM

FEM

FVM

FVM

(a) Ta = 103 RaE = 0

PSM

FEM

FVM

FVM

(b) Ta = 1.5 · 104 RaE = 19182

PSM

FEM

FVM

FVM

(c) Ta = 103 RaE = 1 · 105

Figure 7. Azimuthal velocity, Uφ, a contour plot of the north-south plane of the spher-
ical shell. The panels represent the regimes (I-III) from left to right, respectively. Each
panel consists of a quarter of the individual solution method PSM and FEM, while the
solution of FVM is given twice to compare the contours of each solution. The contour
maximum and minimum values are in (a) +0.18 (0.02), -0.06 (0.01); (b) +20.0 (4.0),
-40.0 (5.0); and (c) +50.0 (5.0), -80.0 (10.0), where the in-parenthesis values are the
contour step
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Figure 8. Azimuthal velocity at the equator (θ = π
2 ) for all basic flow regimes and

methods of solution. FVM ( ) and FEM ( ) and PSM ( ). One has to note
that the velocity is zero due to the no-slip condition, as the system is in the rotating
frame of reference.

4.2. Convective flow. After comparing the thermal distribution, the resulting convective flow is shown
as contour plots in Figure 7 for all basic flow regimes.

In regime (I) the centrifugal force is responsible for the thermal distribution. The relatively small
velocities are dominant at the equator, displaying colder, dense fluid towards the outer shell, bending
the thermal isotherms inward. The azimuthal velocity component refers to the Coriolis force and has the
largest positive value at the equator.

Regime (II) represents a convective regime. The fluid is heated in the equatorial region owing to radial
and meridional components. The DEP force triggers the flow, where hotter fluid with larger electric
permeability is displayed radially outwards towards the outer shell. The meridional component indicates
a flow of hotter fluid moving polewards, cooling the fluid such as it descends towards the inner shell. The
poleward flow deviates towards the east at the outer shell due to the Coriolis force in the upper part,
while at the inner surface, the flow deviates towards the west. A second convective cell is observed at the
pole and is caused by convective motion, attracting colder fluid towards the inner shell, where it moves
towards the larger meridional cell, displacing towards a poleward transport to close the loop. The pole
cell has an inclination, where the mechanism of this deviation is the same as that of the equatorial cell.

Table 3. Solution of Nusselt number, Nu, temperature, T , at the mid-gap and maxi-
mum value of the azimuthal velocity component, |uφ|max, with location of all basic flow
regimes.

Nu inner Nu outer T at r = 2.833 T at r = 2.833 |uφ|max

shell shell θ = 0 θ = π/2 at θ = π/2

Regime I

FVM 1.0005 1.0005 0.3580 0.6086 0.1838 at r = 2.7535
FEM 0.9889 0.9889 0.3557 0.6046 0.1814 at r = 2.7515
PSM 0.9880 0.9880 0.3580 0.6086 0.1813 at r = 2.7583

Regime II

FVM 1.8172 3.1472 0.2271 0.6986 85.7140 at r = 2.8746
FEM 1.7957 3.1102 0.2221 0.6971 85.8694 at r = 2.8829
PSM 1.7963 3.1107 0.2124 0.6985 85.5834 at r = 2.8758

Regime III

FVM 3.6358 10.5687 0.2185 0.7125 40.6130 at r = 2.6403
FEM 3.5961 10.4417 0.2165 0.7111 40.6670 at r = 2.6428
PSM 3.5978 10.4499 0.2182 0.7124 40.6336 at r = 2.6433
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Regime (III) shows a strong radial flow that is deviated from the equator towards the poles. The fluid
descends towards the inner shell at the pole and moves towards the equator. Hence, a large convective
cell is present, filling the complete meridional plane. A similar convective flow is observed compared to
the regime (II) where poleward flow is deviated towards the east while the flow at the inner shell deviates
towards the west.

The contours for velocity compared to the different solution methods are well-matched and are in
agreement with the temperature contours. However, a qualitative comparison of the azimuthal velocity
at the equator reveals a small difference for the first regime, see Figure 8. The azimuthal velocity
component of the regime (I) shows a marginal error when comparing FVM with the other two methods.
However, the error is in the range of 1% or less and refers to the computational accuracy. For regimes
with a larger Taylor and Rayleigh number of regimes (II) and (III) no notable difference is observed
between the methods. The velocity shows kinematic boundary layers, δu, that are larger than the thermal
boundary layers δT ≪ δu as seen in the temperature plots, which is common for fluids with larger Prandtl
numbers [13].

4.3. Heat transfer. The heat transfer across the inner and outer spherical shell provides an overall
quantitative result to compare the different methods of solution. It is evaluated according to eq.(25) for
all regimes and given in Table 3.

Notable is a Nu value smaller than unity for the regime (I) evaluated by the PSM and FEM techniques.
Indeed, this result is, from a first point of view, surprising, as this indicates a suppressed conductive
heat transport. However, there is a physical explanation, that relates to the forcing parameters. In
regime (I) RaE = 0 neither electric force nor dielectric heating is present. The reason for Nu < 1
relates to the rotational forcing and is explained by the centrifugal buoyancy force, see eq.(15) and the
applied non-uniformly heated boundary condition, see Figure 2. Colder, more dense fluid may then be
displayed outward away from the rotational axis, and convection can occur by the centrifugal buoyancy
force explaining the inward bending and outward bending of the temperature isotherms mentioned in
Section 4.1.

The FVM technique was not able to recover a Nusselt number below unity for this particular case
of regime (I) and has overestimated the Nusselt number compared to the FEM and PSM techniques.
However, we have tested larger values of rotational forcing and different aspect ratios where the FVM
technique showed values smaller than unity, recovering the FEM and PSM technique for Nu values
smaller than unity. However, the Nusselt number increases with the Rayleigh number and is consistent
throughout all methods. Another noticeable fact is a difference in the Nusselt number at the inner and
outer shell caused by the dielectric loss of the alternating electric field heating the fluid inside the gap.
Hence, the combination of the applied constant boundary temperature results in an increased heat flux
through the domain caused by dielectric heating. The regimes (II) and (III) have a slight difference
between the FVM and the other methods when the Rayleigh number and Taylor number increase. Both
methods, the PSM and FEM, provide a small error to one another, where the FEM uses shape functions
to describe the solution and treats the gradient on the curved hexahedron mesh structure better than a
central differencing scheme. This may explain the difference in the inner and outer Nusselt numbers with
the inner having a smaller error compared to the PSM and FEM methods than the outer Nusselt number.
In addition, one has to note that the inner and outer cell sizes differ from one another as the mesh is
uniformly produced having the same cell numbers at the inner and outer shell boundaries reducing the
accuracy of the gradient calculation. A cell distribution with uniform element size would may provide an
improved solution. However, the overall error remains at about 1% which is acceptable and proves the
validity of the FVM solver.

5. Concluding remarks

An FVM solver using the OpenFOAM® ecosystem was prepared to solve the influence of an electric
field on a rotating dielectric working fluid confined in a spherical shell. The arising convective flow
was benchmarked using the basic flow states of three regimes given by Travnikov et al. [13]. These
regimes occur as a result of the competition between the DEP force, Coriolis, and centrifugal forces and
are steady, axisymmetric, and equatorially symmetric. This avoids spatial and temporal averaging, as
the uncertainty can be directly evaluated and compared with one another, which makes the numerical
solutions well suited for a benchmark exercise of different computational methods.

The OpenFOAM® solver was compared with a commercially available FEM [45] solver and a custom-
coded PSM [22] solver. The results show well-matched qualitative and quantitative results when compared
to the FEM and PSM techniques, with errors in the order of 1% or less. However, the OpenFOAM®
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solver requires significantly more computational resources when compared to the commercial FEM. De-
spite the higher computational costs, the validation of the solver enables the investigation of more complex
geometries without significant code development where the PSM method reaches its limitation. In ad-
dition, the solver is also able to compute multiregion and multiphysics to model complex flow from an
engineering perspective.

The OpenFOAM® solver is made available via GitHub; see the repository link at the top of the
document. This provides further development of the solver in improving the computational efforts and
the addition of multiphysics to the solver for further fluid flow phenomena in electrohydrodynamics.
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Annalen der Physik, vol. 408, pp. 907–929, Jan. 1933.
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